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A B S T R A C T 

Hyperthermia treatment for solid tumors is a long-used, but poorly accepted method in clinical use. 

Modulated electro-hyperthermia (mEHT, trade name: oncothermia®) changes the paradigm, introduces a 

novel, cellularly selective and immunogenic cell-ruination. The mEHT method produces tumor-vaccination, 

presenting the unharmed genetic information of cancer cells to immune cells [1]. The mEHT method is 

approved in more than 30 countries. Its phase II/III clinical applications indicate a broad perspective. 
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Introduction 

 

Hyperthermia in oncology faces certain challenges [2]. The poor 

performances of the hyperthermia acceptance in the medical community 

developed a general opinion, blaming the physics and the technical 

solutions for unsuccessful processes. Modulated electro-hyperthermia 

(mEHT, trade name oncothermia®) represents a new paradigm of 

hyperthermia treatment for solid tumors, which gives a hint on how to 

apply physics in this complex phenomenon [3, 4]. The 30-year history 

of mEHT covers multiple discoveries and many publications [5]. The 

mEHT technique heats malignant cells selectively. Contrary to the 

conventional isothermal approach, it follows the natural heterogeneity of 

the tumor-structure by selective energy-absorption [6]. The selection 

uses the electromagnetic heterogeneity of the malignant lesion [7]. 

Furthermore, the cancer lesion drastically modifies the collective 

harmony in the attacked organ, which could be repaired in the time-

fractal modulation of the mEHT technology [8]. The main physiology 

parameters of malignant cells differ from their healthy counterpart. 

Conductivity, due to the high metabolic rate, and the variation of the 

dielectric constant of the microenvironments of the cells, due to the loss 

of intercellular bonds are higher [9, 10]. The selective frequency 

dispersion, which focuses on the lipid-protein interactions, chooses the 

intracellular proteins as targets [11, 12]. The main medical task to treat 

advanced malignant diseases requests that the systemic treatment is 

effective on possible micro and macrometastases all over the body. The 

local technique of mEHT produces immune effects, which does the 

required systemic task [13].  

 

Method 

 

The mEHT method focuses on the bioelectromagnetic field of malignant 

cells. It uses sophisticated technical mechanisms to select and “gently” 

kill cancer cells while presenting genetic information about these cells 

to the immune cells. This “message” carried by various proteins is able 

to produce the presentation of antigens, developing the T-cells for 

targeting and killing cancer cells all over the body.  

 

The technique is a capacitive impedance coupled with electromagnetic 

heating. However, the coupling is not plane wave as usual for capacitive 

methods, but strict impedance tuning to the cancerous target [14]. 

Interconnected conductive and dielectric effects establish the base for 

the impedance-selection process, realizing a cellular selection [15, 16]. 

The mEHT technique uses 13.56 MHz radiofrequency [17]. An 

amplitude modulation technique supports the focusing of the electric 

field on the cellular membrane with a time-fractal (1/f) pattern [18]. The 

similarity of the electric field and temperature actions allows the creation 

of the desired effects [19]. Cellular selection is performed with high 

preciosity, showing the excitation of the rafts of the cytoplasmic 
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membrane well [20, 21]. The selective heating of the membrane rafts 

affects the cytoskeleton and its polymerization too [22, 23]. The physical 

effects of the mEHT method are described with various aspects, 

discussing the non-thermal energy-exchange possibility in connection 

with thermal conditions [24-27].  

 

The dose in the selective heterogenic heating differs from the general 

dose concept of conventional hyperthermia [28, 29]. This dose is based 

on energy absorption, similarly, to ionizing radiation therapies [30]. 

Energy absorption depends on the absorbed power and of course, is 

connected to the temperature that produced it, but it describes the real 

effects more accurately [31]. It is a generalization of the conventional 

hyperthermia dose [32]. It is a real advantage that the penetration depth 

of the selective heating is larger than what the isothermal heating 

achieves [33]. Importantly, the heat-up period of the treatment, when the 

energy absorption is quasi-adiabatic, provides the best effect, offering 

the optimization of the treatment protocol [34].  

 

Discussion  

 

mEHT has a long history from laboratory experiments to human 

therapies [35]. The excitation of the membrane rafts is accompanied by 

the point-connected cells, which are common at the end of mitosis 

(cytokinetic phase) [36, 37]. The heat-map difference between the 

conventionally heated and mEHT treated cell-suspension showed certain 

deviations in up, and down-regulated genes in GeneChip measurement 

[38]. Importantly, the combination of mEHT with chemotherapy in vitro 

and in vivo as well as with radiation therapy in vitro and in vivo show the 

broad application variability of the method in preclinical experiments, 

which was also shown in clinical phase in both chemotherapies and 

radiation therapies (See details below) [39-44]. The thermal dose with 

temperature mapping is also shown in vivo, as well as the radiation 

equivalent of mEHT is estimated [45, 46].  

 

mEHT causes massive apoptosis by exciting the death-toll receptors and 

transient reaction-potential channels of the membrane [47, 48]. The 

observed apoptotic cell-distraction is significantly more intensive with 

mEHT than with water-bath or other conventional capacitive coupling 

hyperthermia methods [49]. The large number of apoptotic bodies, 

together with the correct time-sequences of cell membrane exposure of 

Calreticulin, the release of HMGB1 protein, and membrane expression 

of HSP70 form a damage-associated molecular pattern. The 

spatiotemporal series of liberated molecules from the cytoplasm to the 

extracellular electrolyte (Calreticulin - “eat me signal”, HMGB1- 

“danger signal”, released HSP70- “info signal”, and extracellular ATP - 

“find me signal”) triggers immunogenic cell-death (ICD) [50]. ICD 

initiates the maturation of the dendritic cells (DCs) and forms a tumor-

specific antigen presentation, shaping CD4+ and CD8+ T-cells in situ, 

real-time, without extra-corporal laboratory preparations. The prepared 

T-cells act throughout the whole body by blood flow transports, causing 

an abscopal effect on distant micro and macrometastases, increasing the 

survival time as well [51]. The concomitant application of the (anyway 

ineffective) unmatured DCs form antigen presentation cells (APCs), and 

significantly increase the survival [52, 53]. Importantly the re-challenge 

of the same tumor into the cured animal was unsuccessful; the process 

has worked like a tumor-vaccination [1].  

 

The mEHT method has a broad application possibility in oncologic 

clinical use [54]. mEHT is a complementary method and could be 

applied together with all other conventional treatments, including 

chemotherapies and radiotherapies [3, 55, 56]. Importantly, the strong 

selective energy absorption on the membrane rafts helps the cellular 

killing as well as the drug penetration into the cell, and the moderate 

isothermal heat effect pumps the blood to the selected tumor helping the 

drug delivery and also improving the oxygenation which sensitizes the 

radiotherapy action. Oxygen delivery is strongly supported by the 

separation of the grouped erythrocytes (destroys the rouleaux formation 

of them), so oxygen delivery does not need high local isothermal 

temperature [57]. The moderate isothermal gain of temperature does not 

improve the metastatic dissemination, which could be a problem in 

higher heating.  

 

Such a sensitive organ as the brain could be safely treated by a dose-

escalation safety trial for advanced, relapsed glioblastoma patients, and 

an effective curative potential was presented in this group of patients, 

integrated the therapy in complex manner in the clinical practice [58-

60]. A larger group of brain gliomas shows the same positive effect, and 

another trial has detected the immunogenic behaviour in a complex 

integrative therapy [61, 62]. This brain treatment can be personalized, 

and it shows its advantages in both clinical and economic considerations 

in meta-analyses [63, 64]. The results in rectal cancer, gastric cancer, and 

others, show the gastrointestinal capability of mEHT, strongly supported 

by clinical trials on primary and metastatic origin of liver cancer [65-70]. 

The anyway problematic inoperable pancreatic cancer also shows the 

feasibility of mEHT in this disease [71, 72]. The worldwide problematic 

large morbidity of lung cancers needs the complex solutions of the 

therapy, which could be given by mEHT [73]. The high complexity of 

the therapy could use different methods complementary to 

chemotherapy, including mEHT too [74]. Complementary mEHT could 

be used together with chemotherapy and radiotherapy too, even in the 

aggressive small-cell lung carcinoma [75-77]. There was an interesting 

observation, a successful clinical study with intravenous high-dose 

vitamin C for heavily pretreated, advanced, refractory non-small-cell 

lung cancer [78].  

 

mEHT proved its feasibility in gynaecological cancers too. Both the 

local tumor suppression and longer survival time were observed in 

advanced cervical cancers by mEHT with chemotherapy compared to 

chemotherapy alone [79]. Chemo-radiotherapy for recurrent cervical 

cancer was also more effective in case of the complementary application 

of mEHT [80]. A phase III extended clinical trial on local disease control 

in HIV-positive and negative cervical cancer shows significant 

improvement [44]. The survival of cervical cancer patients with or 

without associated HIV infection and treated with mEHT combined with 

chemo-radiotherapy shows the strong capability of the method for long-

term measures as well [81]. An important addition is that the treatment-

related toxicity of the mEHT was suppressed, and at the same time, the 

treatment improves the quality of life of HIV-positive cervical cancer 

patients [82]. The detailed analysis of nodal disease on PET/CT scans in 

patients with HIV-positive and negative locally advanced cervical 

cancer shows the improvement of the patient status metabolically too 

[83]. The treatment of ovarian cancer has also shown advantages with 

the complementary application of mEHT in a clinical trial, and the 

successful mEHT complementary treatment of advanced ovarian cancer 
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with thermo-chemotherapy and adjuvant immune therapy presented a 

significant improvement [84, 85]. Others independently showed the 

feasibility of complex multimodal immunotherapy for patients with 

ovarian cancer [86]. The complex approach showed its capability well 

in breast cancer too, which was also well-supported by immunotherapy 

[87, 88]. The larger group of breast cancer patients also proved the 

efficacy of the mEHT method in a single-centre experience [89]. The 

treatment of advanced triple-negative breast cancers by mEHT is also 

feasible [90]. 

 

The primary leiomyosarcoma of the breast following salvage mEHT and 

pazopanib, as well as recurrent metastatic sarcoma, indicates the 

applicability of the method in this type of solid tumors, which was 

proven in more cases, and in clinical trial too [91-93]. The advantages of 

the complex approach are shown by an 8-year observational study for 

the survival time of various advanced solid tumors treated 

complementarily by mEHT, as well as for various malignant diseases 

when mEHT was applied independently [94, 95]. Cases that respond to 

the mEHT monotherapy are also collected, showing success, and 

sometimes turning the acute, fatal cancer to a chronic, long-term, 

manageable disease [96]. 

 

The abscopal effect using the local mEHT allows the overall action in 

the system; it treats the micro and macrometastases in distant locations 

[97]. The abscopal immune actions are shown in some clinical 

applications for advanced metastatic cancers including brain tumors too 

[62, 87, 88, 98]. The potentiation of the abscopal outcome was one of 

the successful parameters in advanced cervical cancer treatment with 

mEHT and was proven in some cases in combination with radiotherapy 

too [99, 100]. It shows the effects of tumor-directed immunotherapy 

[101].  

 

Conclusion  

 

The method mEHT has a broad application possibility in combination 

with other conventional cancer treatments or even in monotherapy 

application when the condition of the patient does not allow the 

complementary therapy. mEHT extends the local hyperthermia 

treatment to a systemic one by the abscopal effect, making the treatment 

of advanced cancers with distant metastases available.  

 

The preclinical and clinical results support the preliminary expectations 

formulated on theoretical and model basis. The observed clinical results 

allow the development of a guideline for local hyperthermia treatment 

concentrating on mEHT in oncology, with the authorship of 28 

physicians from 12 countries (Austria, Canada, China, Germany, 

Greece, Hungary, Italy, Switzerland, South-Korea, South-Africa, Spain, 

and Taiwan) [102]. 
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