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A B S T R A C T 

Introduction 

 

Radiation-induced Fibrosis (RIF) develops several months or years 

following radiotherapy [1-3]. Also, RIF occurs due to differentiation of 

normal fibroblasts into myofibroblasts, which in turn deposit aberrant 

amounts of extracellular matrix protein instead of undergoing apoptosis.  

Persistence of active myofibroblasts occurs through autocrine and 

paracrine signals and influx of inflammatory cells [4, 5].  In the context 

of radiation exposure, a major trigger towards development of RIF is 

reactive oxygen species (ROS), generated immediately after radiation 

exposure. Radiation-induced bystander effects (RIBE), where 

unirradiated cells exhibit effects of irradiated cells due to signals 

received from nearby irradiated cells, contribute to amplifying the ROS 

levels [6-10].  Generation of ROS is believed to induce epigenetic 

changes that cause differentiation of fibroblasts to myofibroblasts [11, 

12].  Ionizing radiation sources used in cancer therapy include gamma 

rays and X-rays, which possess sufficient energy to displace electrons 

from atoms.  When these energy waves interact with water molecules, it 

leads to excitation and ionization of water molecules to form free 

radicals and ROS.  Generation of ROS takes place in three cellular 

compartments: mitochondria, endoplasmic reticulum (ER) and cytosol.  

The ROS generating processes at all three locations, mutually affects 

each other while also being influenced by the exogenous ROS, thereby 

amplifying the production of ROS from initial levels.  Maintenance of 

homeostasis is achieved by biochemical mechanisms in place in the 

normal physiological setting, to counteract the damaging effects of free 

radical damage by ROS. These include action of enzymes such as super 

oxide dismutase (SOD) and DNA methyltransferases, p53 interplay and 

its regulation to restore the cell to its normal redox state. Ionizing 

radiation induced oxidative stress depends on radiation dose, dose rate, 

and linear energy transfer (LET) [13]. High LET radiation also causes 

persistent ROS, DNA damage, genomic instability in long term effect. 

Failure to maintain the ROS levels at physiological concentrations help 

maintain the myofibroblasts phenotype leading to radiation-induced 

fibrosis. While RIF is an unnecessary complication that occurs months 

to years following radiation, advances in understanding the molecular 

mechanisms have identified biomarkers that can predict patients at 

increased or decreased risk of treatment-related injury, with a goal 

toward improving the therapeutic ratio in order to enable physicians to 

optimize & individualize therapy for patients.   

 

The TGF-β cytokine that stimulates fibroblast proliferation while 

upregulating ECM production has now been identified as a serum marker 
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of developing RIF [14, 15].  Studies from pre-clinical animal models 

indicate Pravastatin to play a role in inhibition of rho kinase, the 

modulator of the Rho/ CCN2/extracellular matrix cascade and thereby 

improving radiation-induced fibrosis [16-19].  Clinical trials with 

Pravastatin have shown some reversal in radiation-induced fibrosis [20].  

Charged particle radiation such as proton and helium, and heavy ion 

carbon radiotherapy with its unique properties to minimize scatter as 

particulate beams pass through the tissue, depositing energy at precise 

depths shows promise for reducing the molecular events leading to late 

radiation-induced fibrotic tissue damage.  In this review, we summarize 

and discuss this pathway from initial radiotherapy to the tissue fibrotic 

endpoint with an aim to shed light into the importance of careful 

planning and evaluation on an individualized basis in order to reduce 

unwanted complications of radiation with severe consequences. 

 

I Molecular Signaling in Radiation-Induced Fibrosis 

 

i TGF-β Signaling Through SMAD Proteins 

 

Transforming growth factor-β has a central role in the radiation-induced 

pathway to fibrosis [21].  Upon activation, either by irradiation via 

reactive oxygen species or other mechanisms, signaling is initiated by 

ligand binding to Type I and Type II TGF-β receptor complexes on the 

cell surface, inducing trans-phosphorylation of the glycine and serine 

residue-rich region (GS) in type I receptor by type II receptor kinases 

[21, 22-24].  The activated type I receptors phosphorylate SMADs 2 and 

3 at the C terminal of the receptor.  SMAD 2 and SMAD3 form a 

complex with a common SMAD 4.  The activated SMAD trimer then 

enters the nucleus to activate gene transcription and promote cell growth 

and survival.    

 

ii Smad3 Predominance in Radiation Induced Fibrosis 

 

Given the predominant role of Smad3 in controlling downstream gene 

expression the TGF-β/Smad3 pathway is implicated in specific TGF-β 

associated pathologic fibrosis, since it controls the synthesis of proteins 

of the extracellular matrix such as Collagens 1, 5 and 6 and its role in 

epithelial to mesenchymal cell transition [21, 25, 26, 27,28].  Clinical 

data shows enhanced expression of TGF-β years after initial exposure 

[29].   

 

iii Role of NF-κB in Radiation-Induced Response 

 

NF-κB is a transcription factor that has an active role in the radiation-

induced adaptive response [30].  The onset of radiation activates a group 

of NF-κB regulated cytokines including TNF-α, which contributes to 

enhanced sensitivity of a cell to radiation [31, 32].  TNF-α activates NF-

κB via receptor activation and regulates the expression of several genes 

involved in the immune and inflammatory response TNF-α activated 

protein kinases activate I κB kinase and c-jun N-terminal kinase,that are 

involved in the NF-κB mediated radiation response [33-39].   

 

iv Reactive Oxygen Species (ROS) 

 

Radiation interacts with molecules of water in cells, causing them to 

ionize and produce ROS which includes superoxide (O2-), hydrogen 

peroxide (H2O2) and hydroxyl radical (OH-), all of which result in 

progressive damage to cells and consequently cell death [40].  The 

majority of radiation-induced cell injury is a consequence of the 

hydroxyl (OH-) radical [41, 42].  Increased production of ROS lead to 

toxicity of cells of parenchymal origin, which initiate a cascade, altering 

the mileu of cytokines in the microenvironment, leading to peroxidation 

of lipids, oxidation of DNA and protein and activation of 

proinflammatory cytokines both in vitro and in vivo [43-46].  Lipid 

peroxidation products activate fibrogenic cytokines that function as 

chemoattractants, mitogens and smooth muscle cell differentiation 

inducers in the blood vessel wall [47].  A summary of effectors of 

fibrosis and the biochemical mechanisms involved are illustrated in 

(Table 1).  

 

Table 1:  Modulators of radiation-induced fibrosis. 

Modulator Biochemical signaling 

pathway 

Fibrotic 

manifestation 

TGFβ Smad dependent pathways a SMA collagen 

Cytokines Smad, NFκB EMT profibrotic 

responses 

TNFα NFκB profibrotic responses 

ROS/RNS DNA oxidation, secretion 

of MMPs 

ECM 

 

II Effects of High LET and low LET Radiation on Fibrosis 

 

High LET radiation is known to result in lower survival of the cell per 

absorbed dose, as compared to low LET radiation.  Pro-fibrotic gene, 

plasminogen activator inhibitor I (PAI-1) is involved in radiation-

induced tissue remodeling via p53, TGF-β and Smad pathway.  Although 

high LET radiation induced more apoptosis than low LET induction of 

the pro-fibrotic gene, plasminogen activator inhibitor I (PAI-1) was 

similar with high LET and low LET [48]. Since expression of PAI-1 is 

regulated by p53, specifically by phosphorylation of the latter at serine 

315, a correlation of phosphorylation at serine 315 of p53 and levels of 

PAI-1 protein expression were observed on Western blot and luciferase 

functional assays with high and low LET [48].  Functional assays did not 

show a correlation between phosphorylation of p53 at serine 37 and PAI-

1 induction. There is a direct correlation between Serine 37 

phosphorylation and apoptosis however, with higher apoptosis observed 

after high LET radiation [48].  Since overexpression of post-mitotic 

fibroblasts is the hallmark cellular phenomenon leading to fibrosis, 

another group of investigators studied the differentiation pattern of 

human fibroblasts along with quantifying the production of extracellular 

matrix components after induction of high and low LET radiation. 

Similar differentiation was demonstrated for 195MeVu -1carbon ions 

with low LET compared with X-rays. Low energy carbon ions were 

observed to be more efficient than X-rays, versus nickel ions, which 

showed a lesser effect on induction of fibroblast differentiation [49].  For 

ECM protein production, a similar pattern of LET dependence was 

observed as was seen for differentiation [49].  

 

III Dose Effects 

 

A variety of factors affect radiation-induced fibrosis. Among these, total 

dose and dose per fraction, treated volume, and time course of radiation 

delivery are the primary factors known to have a significant impact on 

development of fibrosis in treated tissue [50-54]. However, the NTD50 
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values vary among different studies depending on variables besides 

radiation, and the effect of dose rate on the development of fibrosis may 

become arguable [50]. The dose effect also depends on radiation quality.   

Carbon ion radiation induces persistent lung injury and inflammation in 

a mouse model at high doses (over 2 Gy) [55]. 

 

IV Biomarkers for Prediction of RIF 

 

i Biomarkers in Blood 

 

TGF-β1 levels in the serum serve as an early biomarker for development 

of moderate to severe RIF after IR [56-58].  Since, radiation induced 

damage is the consequence of an early activation of an inflammatory 

response leading to significant expression in the bloodstream of a 

cascade of cytokines besides TGF-β1, such as IL-6, KL-6, surfactant 

proteins and IL-1ra, the latter have potential to be used clinically as early 

response markers for radiation induced damage [59-61].   

 

ii Genetic Biomarkers 

 

Studies of molecular mechanisms of radiation sensitivity show 

associations between common variants in DNA damage and repair genes 

and development of adverse reactions to radiotherapy.  Polymorphisms 

in the XRCC1, ATM, hHR21 and TGFβ1 correlate to an increased risk of 

developing an adverse tissue reaction to radiotherapy, whilst one variant 

of the ATM gene has been reported to be radioprotective [62-70].    

 

V Preclinical Animal Models for Treatment of RIF 

 

A TGF-β/Smad Pathway Inhibitors 

 

Since the TGF-β/Smad pathway is a major player in the development of 

fibrosis, its inhibition has been implicated as a possible therapeutic 

intervention. SM16, an inhibitor of TGF- βR1, has been demonstrated to 

be effective in reducing radiation-related lung damage in an animal 

model [71].  LY2109761, inhibitor of TGF- βI serine/threonine kinase, 

known to reduce p-Smad 2 and p-Smad I expression, has been shown to 

suppress and reduce pulmonary fibrosis [72].  Neutralizing antibodies 

against TGF- β inhibited both proliferation of rat lung fibroblasts and 

terminal differentiation of progenitor fibroblasts to post-mitotic 

fibrocytes [73].  SB203580 and WP631 are inhibitors of the Smad signal 

transduction pathway, have been shown to abrogate the excessive 

proliferation and reduced expression of p21 (WAF1/CIP1) and PAI-1 (a 

TGF- β/Smad-responsive profibrotic gene induced by gamma rays and 

TGF-β1 [74, 75].  MyD88 (an intracellular adaptor for TLR signaling) 

regulates innate immunity and NF- κB activated responses, attenuates 

long-term radiation-induced lung injury and protects against fibrosis by 

alleviating chronic lung injury [76]. Fluorofenidone (1-(3-fluorophenyl)-

5-methyl-2-(1H)-pyridone, AKF-PD), a novel pyridine antifibrotic 

agent, reduced cardiac and kidney fibrosis by inhibiting CTGF 

(connective tissue growth factor) expression [77, 78].   

 

B Targeting Chronic ROS/RNS Production 

 

Targeting chronic generation of ROS/RNS post-radiation with long-term 

administration of free-radical scavengers such as superoxide dismutase 

(SOD) and/or catalytic manganese (Mn) porphyrin-based superoxide 

dismutase (SOD) mimetics alleviates oxidative stress, organ hypoxia, 

production of cytokines and injury to heart & lung.  The recombinant 

enzyme SOD-TAT combats radiation-induced lung injury in mice [79].  

SOD has also been used in a porcine animal model to successfully treat 

RIF [80].  Molecular hydrogen is an antioxidant that diffuses through 

cell membranes, reduces levels of ROS and decreases oxidative stress-

induced injury in several organs [81].  The radioprotective drug 

Amifostine is used clinically for its properties of scavenging free 

radicals, DNA protection, and acceleration of repair and this drug has 

potential as a therapeutic for treatment of radiation-induced lung damage 

[82, 83].     

 

C Anti-TNF Antibodies 

 

TNF-α is known to play a major role in the pathogenesis of post-

radiation tissue injury, causing cachexia in addition to tissue and organ 

damage and shock effects that are irreverible.  It is therefore implied that 

Fibrosis could be prevented with antibodies to TNF.  TNF-α receptors I 

and II in soluble form have potential for their application as inhibitors of 

radiation-induced tissue injury [84].     

 

D Restoring Immunological Balance 

 

Glucocorticosteroids have value to restore immunological balance in 

several affected organs and tissues [85]. Sivelestat, a neutrophil elastase 

inhibitor, significantly decreased deposition of collagen and 

accumulation of neutrophils in the lung parenchymal cells and showed 

improvement in static lung compliance of radiation-treated lung [86].   

 

VI Clinical Trials 

 

Since preclinical studies showed the possibility of the anti-oxidant SOD 

as a good candidate for clinical studies, a clinical trial using Lipsod (a 

Cu/Zn SOD in liposomal form) was used in a clinical study at the Necker 

Hospital in Paris in 1984.  34 patients manifesting RIF in skin and 

underlying tissues were treated from May 1984 to January 1986 and 

followed for a time frame of 5 years.  All patients exhibited clinical 

regression of fibrosis at varying degrees [87].  In another study, 

involving 24 women previously treated with radiation for breast cancer, 

a 6-month treatment with a combination of pentoxifylline and alpha-

tocopherol was shown to successfully treat superficial radiation-induced 

fibrosis [88, 89].   

 

VII Future Directions 

 

i Safer Radiation Protocols 

 

Proton beam therapy (PBT) with unique properties to deliver proton 

beams with minimal dose deposition beyond the treatment target has the 

potential to minimize exposure to the heart, lungs, muscle and bone [90]. 

Historically, a relative biological effectiveness of protons in clinical 

practice has been established as 1.1, based upon in vitro and in vivo data 

of the biological effect of protons in the middle of the therapeutic 

radiation distribution or SOBP [91].  However, data also exists that the 

RBE of protons is greater at the distal end of the range. If not accounted 

for, this could result in a greater biologic effect and as a toxicity beyond 

the target at the ribs, lungs and heart. Modeling and accounting for the 
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optimal physical and biological parameters at the end of the treatment 

range remains as an important area for laboratory and clinical 

investigation.  Close clinical follow-up and adopting a ‘data pooling 

culture’ will enable better correlation of individual treatments with long-

term outcome of a large number of patients, so as to better understand 

the impact of variations in radiation treatment protocols [92].   

 

ii Close Monitoring for Timely Intervention 

 

Cardiac damage occurs in more than 50% of patients treated with 

radiation therapy.  Close monitoring of post-radiation effects and clinical 

intervention in the ischemic stage of RICAD might be valuable since this 

is a reversible and treatable, thereby suppressing the subsequent 

progression of damage to irreversible events.  

 

iii Therapeutic Invention Towards the TGF-β Inhibition 

 

Since TGF-β1 is considered the central player in the switch towards 

fibrosis, future therapeutics should be focused towards inhibition of TGF 

β1 receptor activity [93]. Promising results have been achieved using 

small-molecule inhibitors of the TGF-β receptor I kinase in preclinical 

models to treat radiation-induced lung fibrosis [94].  Inhibition of 

integrin receptors which have an important role in cell-matrix 

interactions, serve as another promising new approach for antifibrosis 

therapy [95-97].   

 

Conclusion 

 

Fibrosis is a consequence of various converging paths including 

inflammation, oxidative stress and chronic alterations in gene 

expression.  The complexity of the interplay between these pathways 

may present a varied number of therapeutic targets for combating 

fibrosis.  On the other hand, since some of these targets have pleiotrophic 

effects, caution should be exerted to ensure knocking down one fibrotic 

pathway does not lead to toxicity from another interconnected pathway 

and thereby reduce the overall clinical benefit. This communication 

attempts to discuss the end-point of current radiation protocols (heart and 

lung damage), an inevitable consequence of radiation, clinically 

manifesting as hardening of usually soft organs such as heart and lung 

by deposition of extracellular matrix components which should have 

undergone apoptosis in the normal setting.  This phenomenon is referred 

to as Radiation-induced Fibrosis (RIF).  RIF has been traditionally 

considered an irreversible process.   

 

Although there is no known treatment for this inevitable and undesirable 

side-effect of radiation, contemporary research studies indicate that 

regression of fibrosis can occur using the anti-oxidant Superoxide 

dismutase (SOD) and a combination of pentoxifylline and Vitamin E 

which work synergistically with each other to cause clinical regression 

and successfully treat fibrosis at different levels [87-90]. Even though, 

the end-point of Fibrosis is not the scope of our lab, as a social 

responsibility to the community at large, we have discussed this, since it 

points to the fact that an even higher regression can be achieved with the 

safer radiation beams.  It opens up future research possibilities with 

proton beams and charged particles (known to reduce non-targeted 

effects to normal cells and tissue) and points to the fact radiation-induced 

fibrosis may be treatable with a combination of safer forms of radiation 

as well as mild drugs. Our recent studies explore the possibilities to 

understand and mitigate the radiation related fibrosis [98-100]. 
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