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A B S T R A C T 

Background: Left bundle branch block (LBBB) in heart failure (HF) patients is a negative predictor of 

survival. This pattern is occasionally recorded in individuals without structural heart disease. The LBBB 

morphology has not been previously analyzed in a time-frequency domain using wavelet analysis), and thus 

the factors distinguish LBBB patients from individuals without structural heart disease remain unexplored. 

The purpose of this analysis was to investigate the variations and the differences in LBBB morphology 

between healthy individuals with LBBB and patients with HF and LBBB. 

Methods: HF patients with LBBB and individuals with LBBB were included in this study. Signal-averaged 

90-second Holter monitor recordings were extracted from each subject in orthogonal leads. QRS 

decomposition in 9 time-frequency bands (TFB) was performed using Complex Morlet wavelets 

transformation, while the mean and maximum energies of the QRS complexes were calculated for each of 

the 9 TFBs. The wavelet parameters of HF patients were compared with those of healthy controls. 

Results: Wavelet analysis was performed on ECG recordings of 69 HF patients and 17 individuals without 

cardiac disease. The mean and max wavelet energies of the QRS complex in all TFBs were higher for heart 

failure patients with LBBB, as compared to healthy individuals with LBBB. Differences were statistically 

significant in TFB4 and TFB7 (max energy, axis X), TFB4 and TFB7 (max energy, axis Y) and TFB4 and 

TFB7 (mean energy, axis Y). A multivariate logistic regression model, comprising of the aforementioned 

wavelet parameters, proved reasonably capable of distinguishing between HF patients and healthy controls 

with LBBB (AUC=0.854, 80.2% sensitivity and 80.3% specificity). 

Conclusion: QRS wavelet analysis revealed differences in the template of the QRS complex between 

healthy individuals with LBBB and heart failure patients with LBBB. This feature could be used as 

part of the diagnostic algorithm, a possibility that should be investigated further. 

 

                                                                                       © 2020 Kalliopi Papathoma. by Science Repository. 

 

Introduction 

Left bundle branch block (LBBB) is reflected on the electrocardiogram 

(ECG) as a QRS prolongation above 120ms, a delay of intrinsic 

deflection in leads V5 and V6 of more than 60ms and an absence of Q 

waves in leads I, V5 and V6 [1]. On the basis of additional insights from 

computer simulations, the investigators propose stricter criteria for 

complete LBBB that include a QRS duration ≥140 ms for men and ≥130 

ms for women, along with mid-QRS notching or slurring in ≥2 

contiguous leads [2]. It is characterized by obstruction of the 

depolarization’s signal through the left ventricle’s conduction system. 

LBBB is usually present in patients with cardiac disease, most 
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commonly coronary artery disease (CAD) and chronic heart failure 

(CHF). LBBB occurs in up to 30% of patients with heart failure [3]. In 

these patients, LBBB is an ominous finding, as its presence correlates 

with increased mortality and frequency of adverse events [4, 5]. 

Nonetheless, LBBB is occasionally encountered in healthy individuals, 

having a prevalence of less than 1% in the general population [6]. Even 

in these cases, LBBB confers such individuals with a mortality risk of 

1.3 [6]. 

 

LBBB is associated with poor electromechanical function of the left 

ventricle, as regional delays in depolarization cause dyssynchronous 

activation of the ventricular walls. Reduced systolic shortening in 

regions of the myocardium that depolarize early during systole has been 

observed as the cause of poorer LV function in the setting of LBBB [7]. 

Cardiac resynchronization therapy (CRT) is performed by pacing both 

ventricles and is very effective at ceasing and even undoing the 

deleterious effects of LBBB on cardiac function and remodeling [8]. In 

fact, the presence of LBBB predicts which HF patients with reduced 

ejection fraction stand to benefit the most from CRT therapy [9]. 

 

In addition to QRS complex duration and morphology analysis, our 

group was also subject to a Complex Morlet wavelets analysis (‘cmor’) 

of QRS complex, which constitutes a novel technique of orthogonal 

ECG analysis based on the combination of time-domain and frequency- 

domain [10]. This technique has been found useful in the detection of 

small signal components in large ECG waves [10, 11].  

 

Surface ECG provides a time-domain and a frequency-domain analysis 

of the electrical activation of the heart. However, the frequency content 

of the signal may provide additional information. The wavelet transform 

is a mathematical function that has been used for almost three decades 

as an alternative to the traditional time-domain methods providing a 

time- frequency domain analysis [12, 13]. Wavelet decomposition of the 

signal-averaged electrocardiogram has been proposed as a method of 

detecting small and transient irregularities hidden within the QRS 

complex with marked accuracy and reproducibility [14, 15]. 

 

Wavelet transform (WT) is a widely used method for time frequency 

transformations and it was adopted by several studies in order to capture 

the time specific frequency content appearing in the biomedical signals 

such as ECG [16]. Wavelet analysis of QRS morphologies has been 

performed in the past, enabling the accurate detection of the Q fiducial 

point [17, 18]. Also, wavelet QRS analysis has been used for the 

prediction of response to cardiac resynchronization therapy [19]. At the 

same time, beat-to-beat wavelet analysis of the P-wave has uncovered 

significant differences in wavelet properties between healthy controls 

and patients with paroxysmal atrial fibrillation [20].  

 

The aim of the present study is to delineate the wavelet properties of the 

QRS complex in HF patients with LBBB and otherwise healthy controls 

that exhibited LBBB, as well as compare the findings from both groups. 

 

Materials and Methods 

 

I Study Population 

 

The study was designed and executed according to the Declaration of 

Helsinki. After approval of our institution’s Medical Ethics Committee, 

all participants were provided with a consent form that they agreed to 

sign. HF patients with LBBB, treated in our Department, have been 

invited to participate in this study. To avoid heterogeneity, only patients 

with reduced ejection fraction (HFrEF) included in the study. The 

control group consists of patients treated by our hospital for non-cardiac 

causes and exhibited LBBB without organic heart disease. All the 

patients of the control group underwent a transthoracic echocardiogram 

and a stress test (stress- echocardiogram or treadmill test). None of them 

had history of hypertension and diabetes. The diagnosis of LBBB was 

utilized with the established ECG criteria. QRS duration (QRS>130msec 

for women and QRS>140msec for men) were used for this study [2]. 

Patients who were ventricularly paced were excluded from the study. 

 

II ECG Recordings 

 

ECG signals were recorded with a 3-channel digital Holter monitor 

(Galix Biomedical Instrumentation) for 10 minutes at rest in the X, Y 

and Z orthogonal leads [21]. The consistent rectangular coordinate 

system is illustrated in (Figure 1). The sampling frequency was 1000Hz, 

and the duration of each signal was 90 seconds in order to ensure an 

adequate and artifact-free signal of the same length for all patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: X, Y, Z orthogonal leads. 

 

III ECG Signal Processing and Wavelet Analysis 

 

A signal averaging algorithm was developed to enhance the QRS signal 

and reduce the noise level prior to wavelet analysis. The first step was 

the extraction of raw data from three orthogonal leads (X,Y,Z) from the 

Holter monitor to the computer, followed the signal processing. The 

signal processing includes; the baseline wander removal which was then 

achieved through amplitude normalization, baseline correction and 

application of denoising wavelet filter [22]. Noise was filtered out 

through application of a de-noising wavelet filter. The linear trend from 

ECG and the power line interference (50Hz) were removed from every 

lead. Then a high pass filter and a low pass filter (f1-f2: 0.8Hz-200Hz) 

was applied. A one-dimensional de-noising function was applied for the 

wavelet filter. Also, the threshold selection rule is a heuristic variant of 

the first option using a soft thresholding with a symplet complex wavelet 

and 5 levels of the wavelet decomposition. Selected the multiplicative 

threshold for rescaling done using level-dependent estimation of level 

noise [23]. 

 

The following step was included the localization of the R points and the 

calculation of QRS complexes [24]. All QRS-complexes in each signal 

were calculated and manually inspected by two blinded in order to 

exclude the ectopic beats. QRS complexes in every signal were 
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evaluated, and those found to contain noise or constitute premature 

ventricular contractions (PVCs) were excluded from the analysis. 

 

Wavelet Analysis and Quantification 

 

Wavelet transformation of the QRS complex was conducted, using the 

Complex Morlet wavelets analysis [25]. The outcome of a continuous 

wavelet transform (CWT) is a function of two variables, time and scale. 

Changing the scaling parameter, results in a function with different 

frequency content and time spanning. In this respect, each scaled version 

of the mother wavelet can be mapped to a function with a specific central 

frequency [20]. The bandwidth and the center frequency were 3 and 1 

respectively.  

QRS complex was divided into 3 equal parts with respect to time and 3 

frequency bands, creating a total of 9 time-frequency bands (TFB). The 

high frequency range (150-200Hz) is found in bands TFB1, TFB2, and 

TFB 3; the medium frequency range (100-150Hz) is found in bands 

TFB4, TFB5, and TFB6; and the low frequency range: (50-150Hz) is 

found in bands TFB7, TFB8 and, TFB9 (Figure 2). The initial, middle 

and ending part of the QRS was segmented accordingly. The wavelet 

features that were calculated were the mean and maximum wavelet 

energies of the QRS complexes. These were calculated in each of the 9 

time-frequency bands for each of the 3 axes, yielding 27 features per 

recording [26].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Graphical representation of the time-frequency bands produced during wavelet analysis. TFB Time-frequency band. Also, it is portrayed the 2 

statistically significant time-frequency bands (TFB4 and TFB7). 

 

Comparing the Wavelet Properties between HF Patients and the 

Control Group 

 

The mean and maximum wavelet energies for each time-frequency band 

were compared between the HF group and the controls. Mean 

corresponding to the mean energy of QRS complex in a specific time-

frequency area and maximum corresponding to the maximum energy of 

QRS complex in a specific time-frequency area. In order to investigate 

the ability of QRS wavelet analysis to distinguish between HF patients 

and healthy controls, a multivariate logistic regression was applied. All 

wavelet parameters found to be statistically significantly different 

between the two groups, at a level of p<0.05, were included in this 

model. The following equation describes our model. 

 

 

log [
prob(HF)

(1 - prob(HF))
] =  𝛽𝑇𝐹𝐵4 − 𝑀𝑎𝑥𝑋 + 𝛽𝑇𝐹𝐵7 − 𝑀𝑎𝑥𝑋 + 𝛽𝑇𝐹𝐵4 − 𝑀𝑎𝑥𝑌 + 𝛽𝑇𝐹𝐵7 − 𝑀𝑎𝑥𝑌 + 𝛽𝑇𝐹𝐵4 − 𝑀𝑒𝑎𝑛𝑌 + 𝛽𝑇𝐹𝐵7 − 𝑀𝑒𝑎𝑛𝑌 + 𝜀 

 

The capability of this model to separate HF patients from healthy 

controls was tested with the ROC curve and AUC analysis. All statistical 

analyses were performed using IBM SPSS Statistics version 23.0 

(Chicago, IL, USA). Mean and range of minimum and maximum values 

were used to express normally distributed variables, and median and 

interquartile range for non-normally distributed variables (i.e., all 

wavelet parameters). Differences between groups were explored with 

Student's t-test or Mann Whitney U test for normally and abnormally 

distributed variables, respectively. All p- values were considered 

significant at the 5% level. 

 

 

Results 

 

The total population of the study consisted of 86 subjects, 69 HF patients 

(39 with dilated and 30 with ischemic cardiomyopathy respectively) 

(Group A) and 17 otherwise healthy individuals with LBBB (Group B). 

Demographic data of both groups are provided in (Table 1). Wavelet 

parameters in each of the three orthogonal leads that appeared to differ 

between HF patients and healthy controls are presented in (Table 2). 

 

Comparing the quantified wavelet properties, maximal wavelet energies 

of the QRS complex in all frequency bands were higher, on average, for 

individuals with heart failure, and statistically significant differences 
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were found in the maximal observed wavelet energy in TFB4 (p=0.004), 

TFB7 (p=0.013) in axis X; TFB4 (p=0.018) and TFB7 (p=0.008) in axis 

Y. The mean wavelet energy was significantly increased in HF patients 

in TFB4 (p=0.038) and TFB7 (p=0.032) (Figure 2). 

 

Figure 3 illustrates the wavelets of a typical HF patient and a healthy 

individual with LBBB. A multivariate logistic regression has been 

applied to detect HF by means of wavelet properties (Table 3). The area 

under the ROC curve was significant (AUC: 0.854; p=0.000; Figure 4, 

Table 4). This model achieved 80.2% sensitivity and 80.3% specificity 

in detecting LBBB individuals with heart failure. 

 

Table 1: Demographic characteristics of LBBB patients with and 

without heart failure. 

 Total (SD) 

N=86 

HF (SD) 

N=69 

Control (SD) 

N=17 

p-value 

 

Mean age (years) 66.1 

(7.3) 

65.7 

(8.8) 

67.9 

(7.3) 

0.356 

Male gender 66 

(76.7%) 

54 

(78.3%) 

12 

(70.6%) 

0.227 

QRS duration 

(msec) 

162.9 

(130-196) 

166.7 

(130-196) 

147.5 

(130-173) 

0.124 

Ejection Fraction 

(%) 

31.4 

(14.8) 

24.8 

(5.6) 

58.4 

(2.7) 

0.121 

HF stands for Heart failure. 

 

Table 2: Baseline wavelet parameters of LBBB patients with and 

without heart failure. 

 HF (SD) Control (SD) p-value 

N = 69 N = 17  

TFB4-MaxX 54.36 (82.91) 32.27 (15.47) 0.004 

TFB7-MaxX 41.96 (77.73) 14.87 (5.09) 0.013 

TFB4-MaxY 79.32 (101.46) 39.81 (25.05) 0.018 

TFB7-MaxY 55.60 (85.44) 24.05 (20.26) 0.008 

TFB4-MeanY 47.24 (69.85) 21.74 (12.35) 0.038 

TFB7-MeanY 27.37 (43.65) 11.26 (8.61) 0.032 

HF stands for Heart failure. TFB stands for time-frequency band. 

Terminology used for wavelet parameters TFB {band} Mean or Max 

{lead}, e.g., TFB4-MaxY represents the max energy of the QRS 

complex recorded in TFB 4 in Y lead. Energy is expressed in μV2.P- 

values in bold indicate significance at 5% or lower. 

 

Table 3: Multivariate logistic regression model. 

Variable B (coefficient of 

variation) 

Odds ratio (95% CI) p Value 

TFB4-MaxX -0.165 0.848 (0.772-0.931) 0.001 

TFB7-MaxX 0.282 1.326 (1.123-1.567) 0.001 

TFB4-MaxY 0.096 1.1 (1.006-1.203) 0.036 

TFB7-MaxY -0.143 0.867 (0.771-0.975) 0.017 

TFB4-MeanY -0.063 0.939 (0.808-1.092) 0.413 

TFB7-MeanY 0.285 1.33 (0.993-1.78) 0.055 

TFB stands for time-frequency band. Terminology used for wavelet 

parameters TFB {band} Mean or Max {lead}, e.g., TFB4-MaxY 

represents the max energy of the QRS complex recorded in TFB 4 in Y 

lead. P-values in bold indicate significance at 5% or low. 

 

 

Table 4: Area Under the Curve. 

   Asymptotic 95% Confidence 

Interval 

Area Std. Errora Asymptotic Sig.b Lower Bound Upper Bound 

0.854 0.045 0.000 0.765 0.943 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Representative examples of QRS wave wavelet 

transformation (X axis). On the left is the wavelet representation of a 

healthy individual with LBBB. On the right, the wavelet representation 

of a HF patient. Time (QRS wave duration, msec) is shown at X axis, 

frequency (Hz) at Υ axis and QRS wave energy values (μV2) at Ζ axis. 
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Figure 4: Receiver operating characteristic (ROC) curves: Patients with 

HF and LBBB vs. healthy people with LBBB for the parameter TFB7-

MeanY. 

 

Discussion 

 

The present study was conducted in order to investigate possible 

differences in the QRS complex in patients with LBBB and HF, 

compared to healthy controls with LBBB, using a wavelet analysis of the 

QRS complex. 

 

Our results confirm that there are signal components inside the QRS 

complex that could distinguish LBBB appearing in individuals without 

structural heart disease and LBBB in patients with HF and reduced EF. 

In particular, HF patients exhibited significantly higher maximal wavelet 

energies than individuals without heart diseases. Four (4) out of the six 

(6) wavelet parameters incorporated in the multivariate logistic 

regression model displayed reasonable capacity to distinguish between 

HF patients and healthy controls. The model was able to detect HF with 

a sensitivity of 80.2% and a specificity of 80.3% in the sample of the 

study. It would be interesting to see whether models based on wavelet 

properties retain their predictive capacity in larger and more 

heterogeneous sample sizes. It can be observed that with respect to the 

temporal segmentation, the features from the first part of QRS seem to 

be more informative than the last part of QRS. The most important 

features of the model correspond to the low and medium frequency band 

of QRS. This finding suggests conduction differences, and abnormalities 

related to delayed or fragmented conduction components, which is a 

recognizable phenomenon in LBBB, but also and even more so in 

ischemic hearts. 

 

Some observations can be made about the characteristics of both groups. 

The mean age (65.7y for the HF group vs 67.9y for the healthy control 

group) and the male gender (78.3% for the HF group vs 70,6% for the 

control group) were not significantly differ. QRS duration was also 

higher in the HF group, but this can be factually attributed to the higher 

ventricular sizes observed in HFrEF patients, which are tied to an 

increase in the size of the QRS complex [27].  

 

 

 

Conclusion 

 

Our preliminary results indicate that time-frequency analysis of the 

LBBB-type QRS complex revealed significant differences in HF 

patients and individuals without heart diseases. The regression model 

which was created based on these differences achieved reasonable 

sensitivity and specificity in distinguishing patients with or without heart 

failure presenting with LBBB. QRS wavelet analysis for diagnostic 

purposes is still a nascent field, and more research is needed to reliably 

prove its capacity to distinguish HF patients with LBBB from 

individuals with LBBB without organic heart disease. 
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