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A B S T R A C T 

Background: Phenelzine (PLZ) is a non-specific monoamine oxidase inhibitor that has demonstrated 

clinical efficacy in patients with treatment resistant depression. The mechanism of action with regard to this 

efficacy is complicated in that its metabolite, β-phenylethylidenehydrazine (PEH), is an inhibitor of amino 

acid transaminases resulting in dramatic brain elevations of GABA, alanine, ornithine and tyrosine. The full 

neurochemical profile of PLZ and PEH remain to be explored.  

Objective: To undertake a non-targeted metabolomics study of phenelzine on rat brain neurochemistry. 

Methods: We undertook a high-resolution mass spectrometric metabolomics analysis of rat cortical brain 

1 and 12 hours after intraperitoneal dosing with PLZ or PEH. Tandem mass spectrometry was utilized to 

obtain relative quantitation data.  

Results: N-acetyl amino acids were found to be elevated in cortical brain tissue following either PLZ or 

PEH treatments.  

Conclusions: Our data indicate PLZ treatment significantly augments brain levels of N-acetyl amino acids 

and that this may involve inhibition of deacylases by PEH and/or induction of N-amino acid 

acetyltransferases. 

                                                                                    © 2020 Paul L. Wood. Hosting by Science Repository.  

 

Introduction 

 

Phenelzine is a nonspecific monoamine oxidase (MAO) inhibitor that 

has been utilized in patients with treatment resistant depression [1-4]. 

Phenelzine is a potent inhibitor of both MAO-A and MAO-B which 

increases brain monoamine levels. In contrast, its metabolite, β-

phenylethylidenehydrazine (PEH), is a weak MAO inhibitor but is a 

potent transaminase inhibitor that significantly elevates brain levels of 

GABA and alanine, tyrosine, and ornithine [5-8]. PLZ and PEH also are 

both carbonyl scavenging agents that reduce reactive aldehyde toxicity 

in vivo and in vitro. The aldehyde scavenging actions of PLZ and PEH 

have been hypothesized to be responsible for their neuroprotective 

actions in animal models of ischemia-reperfusion injury, traumatic brain 

injury, spinal cord injury, experimental autoimmune encephalitis, and in 

vitro aldehyde toxicity [9-14]. These data indicate that PLZ and PEH 

have very complex pharmacodynamic effects. To further investigate the 

biochemical effects of these compounds, we undertook a non-targeted 

metabolomics study of PLZ and PEH on the rat brain metabolome. This 

study revealed that PLZ and PEH significantly augment brain levels of 

free N-acetyl amino acids. 

 

Methods 

 

I Rat Brain Samples 

 

Male Sprague Dawley rats were dosed intraperitonially with 30 mg/kg 

of PLZ or PH, and the brains harvested after decapitation at 1 and 12 

hours. The brains were frozen immediately in isopentane on solid carbon 

dioxide and then removed to containers stored at -80oC until the frontal 

cortex was dissected out for metabolomics analysis. All procedures 
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involving animals were approved by the University of Alberta 

Biosciences Animal Care and Use Committee (AUP00000216) and were 

in accordance with the guidelines of the Canadian Council on Animal 

Care. 

 

II Sample Processing 

 

40 to 60 mg of cortical tissue were sonicated in 1 mL of ice-cold 

acetonitrile:methanol:formic acid (800:200:2.5) containing the stable 

isotope internal standards [2H3]N-acetyl-methionine, [2H5]N-acetyl-

glutamate, and bromocriptine [15]. After centrifugation at 30,000 x g and 

4oC for 30 min, 750 µL of the clear supernatant was dried by centrifugal 

vacuum evaporation. The samples were next dissolved in 

acetonitrile:methanol (1:1) for flow infusion analyses. 

 

 

 

Table 1: MS2 analyses of N-acetyl amino acids. 

III High-Resolution Mass Spectrometric Analyses 

 

Samples underwent flow infusion analyses at a flow rate of 12 μL per 

min. and were analysed via high-resolution mass spectrometry (HR-MS) 

utilizing a Q-Exactive benchtop orbitrap (Thermo Fisher) with a 

resolution of 140,000 and less than 1 ppm mass error. Negative ion 

electrospray ionization (NESI) with a sheath gas of 12, a spray voltage 

of 3.7 kV, and a capillary temperature of 321oC was used. For the pilot 

metabolomics analysis, the scan was from 60 to 900 amu. The data were 

analysed via an in-house Excel (Microsoft) spreadsheet with over 1200 

metabolites of interest. 

 

To obtain relative quantitative data of N-acetyl amino acids, MS2 studies 

utilized a window of 0.4 amu for the precursor ion and the product ions 

were acquired at high resolution (< 1 ppm mass error). For MS2 studies 

(Table 1) the neutral collision energy (NCE) was optimized between 20 

and 30 eV.  

N-Acetyl Amino Acid [M-H]- MS2 Product Product Anion 

N-Acetyl Glycine 116.0352 Gly 74.0247 

N-Acetyl Proline 156.0665 Pro 114.0717 

N-Acetyl Valine 158.0822 Val 116.0717 

N-Acetyl Threonine 160.0615 Thr 118.0509 

N-Acetyl Hydroxyproline 172.0615 Hydroxyproline 130.0509 

N-Acetyl Leucine 172.0979 Leucine 130.0873 

N-Acetyl Glutamine 187.0724 Glutamine 145.0618 

N-Acetyl Glutamate 188.0564 Glutamate-CO2 102.0560 

N-Acetyl [2H5]Glutamate 193.0731 [2H5]Glutamate – CO2 107.0873 

N-Acetyl-Methionine 190.0547 Methionine 148.0437 

N-Acetyl [2H3]Methionine 193.0731 [2H3]Methionine 151.0626 

 

IV Data Presentation 

 

Data are presented as relative (R) N-acetyl amino acid levels (i.e. the 

ratio of the signal intensity of the endogenous N-acetyl amino acid to the 

signal intensity of an appropriate stable isotope internal standard), 

corrected for protein, ± SD (N=5). 

 

Results 

 

The most marked observation from our preliminary non-targeted 

metabolomics analysis was increased brain levels of N-acetyl amino 

acids with PLZ and PEH dosing. Since this was a flow infusion analysis, 

there were a number of potential isobars with the exact mass of each N-

acetyl amino acid. Therefore, to obtain relative quantitation data we 

performed MS2 analyses. This approach clearly demonstrated increased 

levels of an array of brain N-acetyl amino acids (Figure 1). It is 

interesting to note that N-acetylaspartate levels, which are in millimolar 

(mM) concentrations in the brain, were unaffected by the drug 

treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Relative levels (R) of N-acetyl amino acids in rat cortical brain tissue at 1 and 12 hours after treatment with phenelzine (PLZ, 30 mg/kg, i.p.) or 

β-phenylethylidenehydrazine (PEH). Gly: glycine; Pro: proline; Val: valine; Thr: threonine; Hyp: hydroxyproline; Leu: leucine/isoleucine; Gln: glutamine; 

Glu: glutamate; Met: methionine. Mean ± SEM (N=5); *, p < 0.05. 
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Discussion 

 

While our knowledge base regarding post-translational processing of 

proteins, via N-acetylation of serine, alanine, glycine, methionine, 

threonine, valine, and aspartate (EC 2.3.1.254-258), or lysine (EC 

2.3.1.32) has grown significantly, our understanding of the roles of free 

N-acetyl amino acids is much more limited [16, 17]. Protein bound N-

acetyl amino acids are released by acylaminoacyl peptidase (EC 

3.4.19.1); however, free N-acetyl amino acids are also synthesized by a 

number of N-acetyl transferases. The most studied free N-acetyl amino 

acid is N-acetylaspartate, since it is present in millimolar concentrations 

in the brain [18, 19]. N-Acetylaspartate is synthesized by a specific 

acetylase NAT8L (EC 2.3.1.17) [20, 21]. Whereas N-acetyl glutamate 

and N-acetylmethionine are both synthesized via amino acid N-

acetyltransferase (EC 2.3.1.1) [22, 23]. Interestingly, methamphetamine, 

a monoamine releaser, has been shown to induce NAT8, the 

aforementioned synthetic enzyme involved in the biosynthesis of N-

acetylaspartate [24, 25]. PLZ, which augments monoamine levels, may 

therefore also induce NAT8L and augment N-acetylamino acids. 

However, PEH which is a weak MAO inhibitor, could not be acting via 

this mechanism. 

 

Alternatively, inhibition of catabolism might be involved in the 

augmentation of N-acetyl amino acids, similar to the augmentation of 

amino acids via inhibition of transaminases by PEH [7]. The potential 

enzyme targets include aliphatic aminoacylase (EC 3.5.1.14; ACY1) 

[26, 27], aspartoacylase (EC 3.5.1.15; ACY2), and N-amino aromatic 

amino acid amidohydrolase (EC 3.5.1.114; ACY3) [28, 29]. In this 

regard, inhibition of ACY3 provides neuroprotection from aldehyde 

toxicity, suggesting that in addition to carbonyl scavenging, 

augmentation of N-acetyl amino acids may contribute to the 

neuroprotection provided by PLZ in models of neural trauma [9-14, 29]. 

 

The functional roles of free N-acetyl amino acids remain to be more fully 

elucidated but decreased plasma levels of N-acetylmethionine have been 

monitored in cystic fibrosis patients and childhood obesity, and 

decreased plasma levels of N-acetylglycine in obesity [30-33]. 

Cadmium, which is an ACY1 inhibitor, elevates urinary levels of N-

acetylglutamate, N-acetylglutamine, and N-acetylphenylalanine, 

suggesting a rapid turnover rate for these N-acetyl amino acids in vivo 

[34, 35]. Similarly, precursor labeling studies have defined the rapid 

dynamics of N-acetylmethionine synthesis in human oligodendrocyte 

cultures [22]. 

 

A detailed analysis of N-acetyl amino acids in dogs with gallbladder 

mucocele formation found decreased blood levels of N-acetylated 

alanine, glycine, glutamate, isoleucine, leucine, methionine, serine, and 

threonine [35]. In contrast, the bile in these dogs was characterized by 

increased levels of N-acetylated glutamate, histidine, isoleucine, leucine, 

lysine, threonine, tryptophan, tyrosine, and valine. These data suggest 

that N-acetyl amino acids play a complex metabolic function in the 

gallbladder. 

 

With regard to brain function, free N-acetylmethionine, N-

acetylglutamine, N-acetylglutamate, N-acetylasparagine, and N-

acetylalanine have all been monitored in the human brain [23, 36-40]. 

N-acetylglutamate is a critical modulator of the urea cycle, while N-

acetylleucine modulates the neuronal activity of vestibulocerebellar and 

posterolateral thalamic circuits involved in vestibular function, while N-

acetylglutamine appears to be involved in the sleep-wake cycle [40-42]. 

Clearly, we currently have limited knowledge of the roles of N-acetyl 

amino acids in brain function. 
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