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A B S T R A C T 

The artificial intelligence (AI) used in drug treatment have to do with matching patients to their predicting 

drug-target or drug-drug interactions, optimal drug or combination of drugs, and optimizing treatment 

protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and 

administration process. Selection of the suitable drug for a patient typically requires the patient data, such 

as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic 

efficacy of drugs. The forecast of drug relations often relies on similarity metrics, pretentious that drugs 

with similar structures or targeted and similar behaviour or may interfere with each other. Deciding the 

dosage schedule for administration of drugs is performed using mathematical models to interpret 

pharmacokinetic and pharmacodynamics data. 

 

                                                                                 © 2021 Rupesh Dudhe. Hosting by Science Repository.  

Introduction 

 

It is a science and engineering of making intelligent machines, mainly 

making excellent computer program. AI is branch of computer science 

which includes simulation of human intelligence by computer program. 

It involves the development of intelligence machines, thinking and 

working like human being, e.g., learning, planning, problem solving, 

recognition and speech. The AI research was constituted by John MC. 

Carthy in a conference held at Dartmouth College 1956. Allen Newell 

(Carnegie Mellon University), John Mc Carthy (Massachusetts Institute 

of Technology), Herbert Simon (Carnegie Mellon University) Marvit 

Minsky (Massachusetts Institute of Technology) and Arthur Samuel 

(IBM) were founder leaders of artificial intelligence. AI is a computer 

program able to perform task that need human intelligence. AI 

constitutes three types: human create algorithm, deep learning and 

machine learning [1]. 

 

i. Human created algorithm: It is evidence-based approaches 

programmed by researcher or clinician after installing known 

data into algorithm; computer can extract information and apply 

it to a given issue. 

ii. Machine learning: It is the scientific study (Link 1) of algorithms 

(Link 2) and statistical models (Link 3) that computer systems 

(Link 4) use to perform a specific task without using explicit 

instructions, relying on patterns and inference (Link 5) instead. 

Machine learning algorithms build a mathematical model (Link 

6) based on sample data, termed as ‘training data’ (Link 7) in 

order to develop predictions without being explicitly 

programmed to perform the task. 

iii. Deep learning: It is part of a broader family of machine learning 

(Link 8) methods based on artificial neural networks (Link 9) 

with representation learning (Link 10). Learning can be 

supervised (Link 11), semi-supervised (Link 12) or 

unsupervised (Link 13) Also known as deep neural learning or 

deep neural network. 

 

AI play important role in health care, Banking industries, 

telecommunication, robotics, gaming, shipping, nuclear management, 

satellite control, Automotive etc. Health care related applications are in 

radiology, disease diagnosis, telehealth, drug interaction, electric health 

record etc. This review focuses on the role of AI in discovery and 

development of drugs. 

 

Role of AI in Discovery of Anticancer Agents 

 

The potent DDR1 kinase inhibitor they established deep generative 

model, generative tensorial reinforcement learning for de novo small 
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molecule design [2]. Discoidin domain receptor kinase (DDR1 kinase) 

is Tran’s membrane receptor that belongs to the class of receptor tyrosine 

kinase. These molecules are involved in regulation of cell growth, 

differentiation and metabolism. Four discovered e-compounds were 

active in biochemical assay and two compounds were validated in cell-

based assay. Developed new drug mechanism associated with drug 

response in disease beyond breast cancer with the help of this machine 

learning approved research work used MDA-MB-231 breast cancer 

single cell treated with antidiabetic drug Metformin [3]. The experiment 

on one of the gene, CDC42 confirmed that Metformin inhibited cancer 

cell migration and Proliferation.  

 

A novel AI protocol for finding potential inhibitors of acute myeloid 

leukemia studied and give detail about [4]. They used 350 training results 

and nine artificial intelligence algorithm models were used to further 

verify the candidate’s potential. Molecular dynamics simulation 

evaluated the stability of the ligand-protein complex and achieved good 

results. AI models had unearthed the promising candidates for STAT3 

inhibitors, and the good performance. Transforming cancer drug 

discovery with big data and AI by ADMET and clinical responses to 

drug treatment are clear areas where an insufficient amount of public 

data are currently available to get the most out of advanced AI algorithms 

[5]. They suggested that Big Data and AI methodology available, 

provision of training is essential to ensure that the next generation of 

drug discoverers are optimally enabled to take advantage of the powerful 

approaches and resources. They also said maximally exploit the benefits 

of Big Data and AI, these approaches must be adopted as an integral part 

of the whole drug discovery journey and continue into the clinical 

development and routine care. 

 

CAD and AI for breast cancer-recent development and challenges 

discussed about by computer-aided diagnosis (CAD) machine learning 

methods and multidisciplinary knowledge and techniques are used to 

analyse the patient information and the results can be used to assist 

clinicians in their decision making process and CAD systems can be 

developed to provide decision support for many applications in the 

patient care processes, such as lesion detection, characterization, cancer 

staging, treatment planning and response assessment, recurrence and 

prognosis prediction. By deep learning (DL) and CAD, or artificial 

intelligence (AI), to medicine in general and to radiology in particular in 

breast imaging and solve problem for medical diagnosis field [6]. 

  

The CAD systems have been developed to help radiologists in order to 

increase diagnosis accuracy. A CAD system consists of four stages:  

 

i. Pre-processing  

ii. Segmentation of regions of interest 

iii. Feature extraction and selection, and finally  

iv. Classification [7].  

 

They approached develop CAD systems on mammography and 

ultrasound images. AI in breast imaging worked on AI-CAD systems are 

focusing on breast diagnostic techniques such as ultrasound and 

magnetic resonance imaging (MRI) [8]. They fulfill gap in the market 

for contrast-enhanced spectral mammography AI-CAD tools. It is a cost-

effectiveness assessment should be undertaken, with a large feasibility 

study carried out to ensure there are no unintended consequences. 

Role of AI in Discovery of Anti-Diabetic Agents 

 

Artificial intelligence (AI) is a quickly growing field, and its applications 

to diabetes research are growing even more rapidly. AI methods in 

combination with the latest technologies, including medical devices, 

mobile computing, and sensor technologies, have the potential to enable 

the creation and delivery of better management services to deals with 

diseases. The machine learning method of the Action to Control 

Cardiovascular Risk in Diabetes (ACCORD) trial was used to identify 

characteristic of patient at high cardiovascular risk from glycemic 

therapy for type-2 diabetes [9]. The participants were 40-79 years old 

with type 2 diabetes. The analysis involves four groups defined by age, 

BMI, and HGI (Haemoglobin glycosylation index) with varied risk for 

mortality under intensive glycemic therapy. The lowest risk group (HGI 

<0.44, BMI <30 kg/m2, age <61 years) had an absolute mortality risk 

decrease of 2.3% attributable to intensive therapy (95% CI 0.2 to 4.5, P 

= 0.038; number needed to treat: 43), whereas the highest risk group 

(HGI ≥0.44) had an absolute mortality risk increase of 3.7% attributable 

to intensive therapy (95% CI 1.5 to 6.0; P < 0.001; number needed to 

harm: 27). The overall results conclude that Age, BMI, and HGI may 

help individualize prediction of the benefit and harm from intensive 

glycemic therapy. 

 

By AI techniques worked on a QSAR study on two diverse and enlarged 

α-amylase and α-glucosidase inhibitor databases collected from the 

ChEMBL [10]. They compared between different ML techniques for 

both datasets shown that k-NN (k-Nearest Neighbours) is the algorithm 

with the best fit. They also validated by two-way scheme based on ML-

QSAR for the discrimination of active compounds from inactive 

chemicals in both α-amylase and α-glucosidase targets. AI for diabetes 

management and decision support is very important and by that we 

reduce the risk of death [11]. AI-powered tools for prediction and 

prevention of complications associated with diabetes. Our results 

indicate that AI methods are being progressively established as suitable 

for use in clinical daily practice, as well as for the self-management of 

diabetes. Consequently, these methods provide powerful tools for 

improving patients’ quality of life. They provide the General CRISP-DM 

model for the KDD process and how to that work for diabetes. 

 

AI and machine learning in diabetes care they trying to 

optimize/automate therapy using machine learning algorithms at the 

patient level, on their routine visit scant at the global level and is 

nonexistent at the national level. Their work of area and data collection 

parameter was given prediction of diabetes, Glycemic control, prediction 

of glycemic events, and prediction of complications and Diagnosis of 

complications. Monitoring patients with diabetes using wearable 

sensors: predicting glycaemias using ECG and Respiration Rate by that 

they present a machine-learning based approach to predict and recognize 

anomalous blood glucose levels (hypo and hyper glycaemia) for patients 

with type I and II diabetes [12]. A general machine-learning approach 

was used to build classification models, based on attributes obtained 

from the ECG signals and respiration rate measurements. Two QSAR 

ways for anti-diabetic agents targeted using α-Amylase and α-

Glucosidase Inhibitors [10]. In that they used model parameters settings 

in AI techniques. Two assay datasets that include α-amylase and α-

glucosidase as enzyme targets are used. Optimized parameter values of 

the machine learning techniques by Workflow followed for the 
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construction of the ML-QSAR models. They also checked parameter by 

ML-QSAR model for α-amylase inhibitory activity and α-glucosidase 

inhibitory activity. This paired virtual screening proposed could help to 

increase the successfully in the search of novel lead compounds for the 

inhibition of these hydrolytic enzymes and hence the management of 

type-2 DM. 

 

AI proteomics improves cardiovascular risk assessment [13]. The 

integrin-binding structures promote leukocyte recruitment and stimulate 

expression of pro-inflammatory cytokines in the blood vessel wall, and 

by therefore represent important new biomarkers of CVD risk that could 

not be predicted based on earlier research. The study would therefore be 

able to use advanced proteomics methods to combine protein expression 

levels and PTM data with DPM profiles and analyses of EV cargo, 

thereby defining more effective bio signatures of clinical course in multi 

factorial disorders such as CVD. PEPPER was being developed using a 

patient-centric approach in order to improve patient self-efficacy and 

adherence to treatment. The software developed and adheres to 

international standards including those that apply to security and 

interoperability. The PEPPER system provides a portable personalized 

decision support system for insulin dosing that combines data from 

multiple sources such as body-worn sensors and manual inputs. The 

Case- Based Reasoning module is designed to provide a personalized 

insulin dose which adapts over time. A Model-Based Reasoning module 

is designed to maximize safety through prediction of adverse events and 

the detection of faults. The final system tested in silico before being 

clinically validated over a 6-month non-randomized open-label 

ambulatory trial [14]. Artificial Pancreas controller significantly 

improves all the evaluated glycemic outcomes in virtual type 1 diabetes 

on 11 adults, when compared against the Imperial College Artificial 

Pancreas without bolus adaptation over a three-month scenario with 

realistic inter-subject and intra-day variability. It is worth noting that the 

significant reduction in hyperglycemia was achieved without any 

increase in hypoglycemia. Trials have been planned to clinically validate 

the proposed technique [15]. 

 

 

Role of AI in Malaria Disease 

 

Deep malaria AI driven discovery of potent antiplasmodials by given by 

AI, utilizing either structure-based or ligand-based approaches, has 

demonstrated highly accurate performances in the field of chemical 

property prediction [16]. Leveraging the existing data, AI would be a 

suitable alternative to blind-search HTS or fingerprint-based virtual 

Screening. The AI model would learn patterns within the data and help 

to search for hit compounds efficiently. In this work, we introduce Deep 

Malaria, a deep learning based process capable of predicting the anti-

Plasmodium falciparum inhibitory properties of compounds using their 

SMILES. 

 

Investigate on cheminformatics based machine learning models for 

AMA1-RON2 abrogates for inhibiting plasmodium falciparum 

erythrocyte invasion [17]. This process was mediated by interaction 

between conserved Apical Membrane Antigen (AMA1) and Rhoptry 

Neck (RON2) protein, which is compulsory for successful invasion of 

erythrocyte by Plasmodium and manifestation of the disease Malaria. 

They used the physicochemical properties of the compounds available 

from a confirmatory high throughput screening. They tested for 

disruption capability of crucial molecular interaction; they trained 

supervised classifiers and validated their robustness by various statistical 

parameters. Integrative multi-kinase approach for the Identification of 

potent antiplasmodial hits and developed robust and predictive shape 

based and machine learning models, able to prioritize 10 promising hits 

as anti-malarial candidates [18]. Three compounds, LabMol-171, 

LabMol-172 and LabMol-181, reached activity in nano molar 

concentration against P. falciparum strains, besides low cytotoxicity on 

mammalian cells (Figure 1). Moreover, these compounds did not show 

cross resistance with multidrug resistant strain, suggesting a different 

mechanism of action. Besides that, LabMol-171 and LabMol-181 also 

showed considerable inhibition of kinetic formation in P. Berghei 

standing out as powerful transmission blockers. Furthermore, a docking 

study shed some light into LabMol-171 interactions with CDPK1, 

CDPK4, and PK6 and suggests that could be a potential MKI, being able 

to bind with hinge and catalytic loop regions of proposed kinases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Chemical structures of LabMol-171, LabMol-172 and LabMol-181. 
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Deep learning-driven research for drug discovery in tackling malaria 

applied the best models for a virtual screening of a large database of 

chemical compounds [19]. The top computational predictions were 

evaluated experimentally against asexual blood stages of both sensitive 

and multi-drug-resistant Plasmodium falciparum strains. Among them, 

two compounds, LabMol-149 and LabMol-152, showed potent 

antiplasmodial activity at low nano molar concentrations (EC50 <500 

nM) and low cytotoxicity in mammalian cells (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Chemical structures of LabMol-149 and LabMol-152. 

 

Bayesian models trained with HTS data for predicting β-haematin 

inhibition and in vitro antimalarial activity studied both in vitro 

antimalarial activity and inhibitory data for β-haematin formation, 

largely obtained from publicly available sources, has been used to 

develop Bayesian models for inhibitors of β-haematin formation and in 

vitro antimalarial activity [20]. These models were used to screen two 

in-silico compound libraries. In the first, the 1510 U.S. Food and Drug 

Administration approved drugs available on PubChem were ranked from 

highest to lowest Bayesian score based on a training set of β-haematin 

inhibiting compounds active against P. falciparum that did not include 

any of the clinical antimalarial or close analogues. The six known 

clinical antimalarial that inhibit β-haematin formation were ranked in the 

top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate 

for this set of compounds was found to be 81% in the case of the subset 

where activity data are available in PubChem. In the second, a library of 

about 5,000 commercially available compounds (AldrichCPR) was 

virtually screened for ability to inhibit β-haematin formation and then 

for in vitro antimalarial activity. A selection of 34 compounds was 

purchased and tested, of which 24 were predicted to be β-haematin 

inhibitors. The hit rate for inhibition of β-haematin formation was found 

to be 25% and a third of these were active against P. falciparum, 

corresponding to enrichments estimated at about 25- and 140-fold 

relative to random screening, respectively [21].  

 

Role of AI in Discovery of Anti-Microbial Agents 

 

Machine learning-powered antibiotics phenotypic drug discovered and 

showed that a combined HCS and molecular information-based semi-

automated phenotypic profiling platform, coupled to a ML-powered 

analysis pipeline, can effectively differentiate the MoA of novel 

antibacterial compound hits [22]. Hence the known antibacterial 

compound and target space of an existing pharmaceutical compound 

library is expanded. In addition, our approach enables SAR guidance and 

increases confidence that chemical modifications introduced during 

SAR, in an attempt to improve potency, retain desired compound MoA. 

They convinced that such a combined multipara metric HCS/genomic 

approach coupled to ML could be profitably applied in PDD across a 

broad range of biological problems. 

 

Identification of novel antibacterial using machine learning techniques 

they develop an efficient in-silico model able to find compounds that 

have plenty of chances to exhibit antibacterial activity [23]. Based on a 

screening, they have accumulated a representative dataset of more than 

140,000 molecules with antibacterial activity against Escherichia coli. 

They used a very large database of our proprietary HTS results to 

construct a highly discriminative and robust in-silico model able to score 

molecules by their antibacterial potency against E. coli. The main focus 

was placed on compounds with low similarity in structure to the reported 

antibacterial, as well as maximum diversity. Forty of the most reliable 

molecular descriptors were rationally selected from a whole pool of more 

than 1,700 calculated features. The final set of descriptors reflects 

several key aspects in privileged structures presented in antibacterial or 

non-antibacterial compounds and significant patterns hidden in the input 

chemical space. 

 

The techniques of machine-learning for antibacterial drug discovery by 

Computer-Aided Drug Design (CADD), Ligand-Based Approaches and 

Receptor-Based Approaches because traditional drug-discovery 

paradigms have failed to keep up with the growing need for novel 

antibiotics [24]. Many pharmaceutical companies have abandoned 

antibiotic research entirely in search of more lucrative markets. Even 

those companies that have sought novel therapeutics have faced great 

challenges. Machine-learning methods have the potential and give the 

accuracy of high-throughput ligand- and receptor-based screening 

without sacrificing speed. They permit more nuanced binding estimates 

by freeing affinity prediction from predetermined formulaic or statistical 

forms. Rather, these techniques find patterns in observations of nature 

herself, independent of formulas or human theories. 

 

Due to the rapid emergence of antibiotic-resistant bacteria, there was a 

growing need to discover new antibiotics. To address this challenge, we 

trained a deep neural network capable of predicting molecules with 

antibacterial activity for that A Deep Learning Approach to Antibiotic 

Discovery by Jonathan et al., Modern approaches to antibiotic discovery 

often includes screening large chemical libraries for those that elicit a 

phenotype of interest. Those screens, which are upper bound by 

hundreds of thousands to a few million molecules, were expensive, time 

consuming, and can fail to capture an expansive breadth of chemical 
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space. In contrast, machine learning approaches afford the opportunity 

to rapidly and inexpensively explore vast chemical spaces in-silico. Our 

deep neural network model works by building a molecular representation 

based on a specific property, in our case the inhibition of the growth of 

E. coli, using a directed message passing approach. We first trained our 

neural network model using a collection of 2,335 diverse molecules for 

those that inhibited the growth of E. coli, augmenting the model with a 

set of molecular features, hyper parameter optimization, and assembling. 

Next, they applied the model to multiple chemical libraries, comprising 

>107 million molecules, to identify potential lead compounds with 

activity against E. coli. After ranking the candidates according to the 

model’s predicted score, they selected a list of promising candidates. 

 

Worked on public health and epidemiology informatics: can AI help 

future global challenge they also emphasis on antimicrobial resistance 

and impact of climate change in disease epidemiology [25]. They give 

information of higher temperatures and increased precipitations are 

influencing the life cycle and the distribution of ticks, their spreading, 

development, and reproduction. As a consequence, tick-borne diseases 

are also spreading. Similarly, the West Nile virus, which was transmitted 

by mosquitos, was also expected to proliferate based on changes in 

mosquito populations. The increase in temperatures was allowing the 

overwintering of species and expanding the range of the disease-causing 

vectors. Chikungunya, a virus transmitted by the Aedes sp. mosquito, 

that caught a lot of attention from the media in the last years, was also 

affected by climate change: once again, the increase of the global 

temperature could lead to a proliferation of this mosquito in southern 

coastal regions. Many disease including dirofilariosis, tularemia, 

puumala virus, rabies, as well as airborne, food, and waterborne diseases 

caused.  

 

AI-Driven Tools for Coronavirus 

 

Epidemics of the COVID-19 discussed by K. C. Santosh, the importance 

of the AI-driven tools and their appropriate train and test models have 

been introduced and discussed [26]. AI-driven tools mostly employ 

RNA sequences. Besides, Electronic Health Record (EHRs), 

Computerized Tomography (CT) scans, Chest X-rays, and other data are 

considered and tested. Alibaba launched a new AI-based system to detect 

coronavirus infection via CT scans with an accuracy of up to 96% which 

was used to diagnose COVID-19 - can be complemented to the reverse-

transcription polymerase chain reaction (RT-PCR) tests considering the 

spread rate of COVID-19 (across the globe), AI-driven tools are 

expected to work as cross population train/test models [27]. 

 

False-Negative Results of Real-Time Reverse-Transcriptase Polymerase 

Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus-2 

on Role of Deep-Learning-Based CT Diagnosis and Insights from Two 

Cases and confirm the result by rRT-PCR tests serve as the gold standard 

method to confirm the infection of SARS-CoV-2. They conclude their 

result by (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Chest CT scans for patient in Case 2. A) Thin-slice CT scan that shows glimpse of lesions. CT shows diffuse ground-glass opacities in dependent 

area of right lower lobe. B) Representative of DL-based segmentation of lesions in lower lobe of right lung that shows overview of automatically calculated 

ratios. 

 

Artificial intelligence alarms suspected pneumonia based on relatively 

large proportion of abnormalities in lung. Detailed abnormality 

proportions in whole lungs, right upper lobe, right middle lobe, right 

lower lobe, left upper lobe, and left lower lobe were calculated and listed. 

 

AI Distinguishes COVID-19 from Community Acquired Pneumonia on 

Chest CT a fully automatic framework to detect COVID-19 using chest 

CT and evaluate its performances [28]. Materials and Methods in this 

retrospective and multi-center study, a deep learning model, COVID-19 

detection neural network (COVNet), was developed to extract visual 

features from volumetric chest CT exams for the detection of COVID-

19. They also established deep learning model can accurately detect 

COVID-19 and differentiate it from community acquired pneumonia and 

other lung diseases. Identification of COVID-19 Can Be Quicker 

through AI Framework Using a Mobile Phone-Based Survey in the 

Populations When Cities/Towns Are Under Quarantine [29]. They used 

a mobile phone-based web survey. This reduced the spread in the 

susceptible populations and give very accurate data for COVID-19 

disorder and spreading the community.  

  

On the Coronavirus (COVID-19) outbreak and the smart city network 

on universal data sharing standards coupled with AI to benefit urban 

health monitoring and management the virus outbreak from an urban 

standpoint and advances how smart city networks should work towards 

enhancing standardization protocols for increased data sharing in the 

event of outbreaks or disasters, leading to better global understanding 

and management of the same [30]. They defeat coronvirus-19 in China 

by that technique and overcome that situation. Correlation of Chest CT 

and RT-PCR testing in COVID-19 in China on 1014 Cases in this study 

they conclude that cases had initial positive CT consistent with COVID-

19 prior (or parallel) to the initial positive RT-PCR results [1]. 
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Miscellaneous Role of Artificial Intelligence 

 

Tumor necrosis factor (TNF) blocking agents are associated with lower 

risk for Alzheimer’s disease in patients with rheumatoid arthritis and 

psoriasis [31]. They analysed the value of a large, population-based 

database aggregating electronic health records from nearly 56 million 

adult patients for the rapid interrogation of the treatment benefit of 

prescription drugs. Patients diagnosed with a systemic inflammatory 

disease are at increased risk for developing Alzheimer’s disease, while 

TNF blocking agents were associated with decreased risk for comorbid 

Alzheimer’s disease in real-world patients diagnosed with rheumatoid 

arthritis or psoriasis. 

  

Comparing multiple machine learning algorithms and metrics for 

estrogen receptor binding prediction in that work an exhaustive 

comparison of multiple machine learning algorithms, chemical spaces, 

and evaluation metrics for estrogen receptor binding was performed on 

numerous public datasets created using in-house chem [32]. informatics 

software, Assay Central. Chemical features were created with public 

tools, consisting of binary fingerprints and continuous molecular 

descriptors. Each feature set was subjected to either Classic Machine 

Learning algorithms or Deep Neural Networks of varying depth. Models 

were then evaluated using a variety of metrics, including five-fold cross 

validation which showed Deep Neural Networks had a clear advantage 

for prediction within the training set over Classic Machine Learning 

models. 

 

The rom machine learning to deep learning: progress in machine 

intelligence for rational drug discovery and defined how machine 

intelligence, which is normally presented as artificial intelligence, refers 

to the intelligence exhibited by computers [33]. An artificial neural 

network integrated pipeline for biomarker discovery using Alzheimer's 

disease experiments they show greater understanding of the biology 

behind Alzheimer's disease, its progression and the mechanisms 

involved [34]. By expanding to other brain regions and datasets and 

focusing the questions on the most relevant genes, it is possible to 

identify new markers and drivers of the disease that can be used 

alongside the current ones to improve prognosis and provide more 

targets for therapy. 

 

The precision psychiatry applications with pharmacogenomics, artificial 

intelligence and machine learning approaches application of AI in 

correlation with physical parameter works have applied [35]. AI and 

machine learning methods to predict diagnosis of certain psychiatric 

disorders such as Alzheimer’s disease, autism spectrum disorder, and 

schizophrenia. TopP–S: Persistent homology‐based multi‐task deep 

neural networks for simultaneous predictions of partition coefficient and 

aqueous solubility studied by [36, 37]. This work introduces an algebraic 

topology‐based method, called element‐specific persistent homology 

(ESPH), as a new representation of small molecules that is entirely 

different from conventional chemical and/or physical representations. 

ESPH describes molecular properties in terms of multi scale and multi 

component topological invariants. Such topological representation is 

systematically, comprehensive, and scalable with respect to molecular 

size and composition variations. This strategy leads to a more accurate 

prediction of relatively small datasets. A total of six datasets was 

considered in this work to validate the proposed topological and 

multitask deep learning approaches. 

 

Machine learning models for lipophilicity and their domain of 

applicability. Unfavourable lipophilicity and water solubility cause 

many drug failures [38]. They used a modern Bayesian machine learning 

algorithm Gaussian process model this study constructs a log D7 model 

based on 14556 drug discovery compounds of Bayer Schering Pharma. 

Performance was compared with support vector machines, decision 

trees, ridge regression, and four commercial tools. The 81% were 

predicted correctly within 1 log unit, compared to only 44% achieved by 

commercial software by them. 

 

Estimating the domain of applicability for machine learning QSAR 

models: a study on aqueous solubility of drug discovery molecules 

investigate error bars from a Bayesian model (Gaussian Process (GP), 

an ensemble based approach (Random Forest), and approaches based on 

the Mahalanobis distance to training data (Support Vector Machine and 

Ridge Regression models) [39]. They evaluate all approaches in terms 

of their prediction accuracy (in cross-validation, and on an external 

validation set of 536 molecules) and in how far the individual error bars 

can faithfully represent the actual prediction error. 

 

Improved prediction of aqueous solubility of novel compounds by done 

deeper with deep learning [40]. Aqueous solubility was an important 

physicochemical property of compounds in anti-cancer drug discovery 

and development, impacting pharmacokinetic properties and 

formulations for that AI solubility prediction tools have been developed 

by employing regression and modelling, machine learning, and deep 

learning methods. Those compounds considered by medicinal chemistry 

experts as difficult for solubility estimations. To better explore the 

learning capability of deeper-net architectures, the molecular 

representations of the compounds may be selected for conforming to 

these architectures. Specifically, the superior local-feature learning 

capability of the CNN architectures may be better exploited by using the 

substructure-encoded molecular fingerprints for representing 

compounds. By novel approach may find broader applications in the 

development of high-performance deep learning models for the 

prediction of various pharmacodynamics, pharmacokinetic, and 

toxicological properties [41]. 

 

Deep architectures and deep learning in chemo informatics: The 

prediction of aqueous solubility for drug-like molecules that show that 

the UG-RNN approach can be used to build aqueous solubility predictors 

that match and sometimes outperform current state-of-the-art methods. 

One important difference between UG-RNN-based approaches with 

respect to other methods was the ability to automatically extract internal 

representations from the molecular graphs that are well suited for the 

specific tasks [42]. That aspect was an important advantage for a 

problem like aqueous solubility prediction, where the optimal feature set 

is not known and may even vary from one dataset to the other. It also 

saves time and avoids other costs and limitations associated with the use 

of human expertise to select features. Blood test for Alzheimer’s disease 

by candidate’ blood (and CSF) markers blood biomarker studies and 

clinical trials [43]. They perform RADAR-CNS (RADAR-CNS.org), a 

major goal of which is to develop a generalized real-time streaming 

platform that and enable active and passive remote monitoring, tracking 
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phenotypes such as function and cognition. Gene expression has also 

been explored as a potential source of blood biomarkers for AD. Little 

consistency has been seen in the genes selected by these various studies, 

to suggest that greater concordance might be seen at the pathway level 

[44]. 

 

The in silico prediction inhibitory of constant of thrombin inhibitors by 

using machine learning techniques [45]. This work was carried out to 

predict Ki values of thrombin inhibitors based on a large data set by 

using machine learning methods. Total of 6554 descriptors for each 

compound were collected and four different methods including multiple 

linear regression (MLR), K Nearest Neighbours (KNN), Gradient 

Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) 

were used to build prediction models with these selected descriptors. The 

SVM model was the best one among these methods with R2=0.84, 

MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. 

 

Predict bioactivities of ligand molecules acting with G protein-coupled 

receptors by using weighted deep learning and random forest approach 

(WDL-RF) [37]. The algorithm consists of two consecutive stages:  

 

i. Molecular fingerprint generation through a new weighted deep 

learning method  

ii. Bioactivity calculations with a random forest model.  

 

That research includes testing on a set of twenty-six non-redundant 

GPCRs that have a high number of active ligands (each with 200-4000 

ligand associations). The overall result conclude that WDL-RF can 

generate bioactivity predictions with an average root-mean square error 

1.33 and correlation coefficient (r2) 0.80 compared to the experimental 

measurements, which are significantly more accurate than the control 

predictors with different molecular fingerprints and descriptors. OCT-

based deep learning algorithm for the evaluation and treatment indicated 

with anti-vascular endothelial growth factor medications [46]. The 

machine learning methods can offer the clinician support in the decision-

making process. Care should be taken not to mistake neural network 

output as treatment recommendation and to ensure a final thorough 

evaluation by the treating physician. 

 

Deep learning-based approached to predicted gene regulating effects of 

small molecules [47]. They successfully combined molecular fingerprint 

descriptors and gene descriptors to train deep neural networks that 

predict differential gene regulation endpoints collected in LINCS 

database. They achieved 10-fold cross-validation RAUC scores of and 

above 0.80, as well as enrichment factors of >5. The deep learning 

models can effectively synergize molecular and genomic descriptors and 

can be used to screen for novel drug candidates with the desired effect 

on gene expression. Mathematical deep learning for pose and binding 

affinity prediction and ranking in D3R grand challenges [48]. D3R grand 

challenge 2 focused on the pose prediction, binding affinity ranking and 

free energy prediction for Farnesoid X receptor ligands. Those models 

obtained the top place in absolute free energy prediction for free energy 

set 1 in stage 2. The latest competitions, D3R Grand Challenge 3 (GC3), 

were considered as the most difficult challenge so far. It has five sub 

challenges involving Cathepsin S and five other kinase targets, namely 

VEGFR2, JAK2, p38-α, TIE2, and ABL1. There were a total of 26 

official competitive tasks for GC3. Our predictions were ranked 1st in 

10 out of these 26 tasks. AI in drug discovery by while many of the new 

approaches have yet to bear fruit in terms of drugs being progressed to 

market, initial reports tend toward the belief that they became even more 

integral in the drug discovery process than has hitherto been seen [49]. 

New systems can design new chemical structures effectively, predicted 

for the desired molecular property profiles and even how to synthesize 

those compounds. 

 

On MABAL: a novel deep-learning architecture for machine-assisted 

bone age labeling by that demonstrated the benefits of a customized 

neural network algorithm carefully calibrated to the evaluation of bone 

age utilizing a relatively large institutional dataset. In doing so, that study 

showed that advanced architectures can be successfully trained from 

scratch in the medical imaging domain and can generate results that 

outperform any existing proposed algorithm [50]. Deep learning based 

regression and multi-class models for acute oral toxicity prediction with 

automatic chemical feature extraction done prediction of human 

cytochrome P450 inhibition using a multi-task deep auto encoder neural 

network [51]. 

 

Deep learning in medical image analysis and applied to lesion detection 

or classification have reported superior performance compared to those 

by conventional techniques or even better than radiologists in some tasks 

[6]. The potential of applying deep-learning-based medical image 

analysis to computer-aided diagnosis (CAD), thus providing decision 

support to clinicians and improving the accuracy and efficiency of 

various diagnostic and treatment processes, has spurred new research 

and development efforts in CAD. Endoscopic diagnosis using AI, the 

CAD is expected to help endoscopists improve detection and 

characterization of polyp, cancer, and inflammation in all digestive area 

[52]. Some CAD systems showing ability better than endoscopists have 

been reported. Deep learning beyond cats and dogs: recent advances in 

diagnosing breast cancer with deep neural networks [53]. They evaluated 

the impact of deep learning based diagnostic systems that can help 

clinicians with screening and diagnosing breast cancer. AI in cardiology 

identified how cardiovascular medicine could incorporate artificial 

intelligence in the future [54]. They predicted modeling concepts 

relevant to cardiology such as feature selection and frequent pitfalls such 

as improper dichotomization. They describes the advent of deep learning 

and related methods collectively called unsupervised learning, provides 

contextual examples both in general medicine and in cardiovascular 

medicine, and then explains how these methods could be applied to 

enable precision cardiology and improve patient outcomes. 

 

AI in medical imaging of the liver discussed that AI used and getting 

increasingly popular in the medical imaging of the liver, including 

radiology, ultrasound, and nuclear medicine [55]. It assisted physicians 

to make more accurate and reproductive imaging diagnosis and also 

reduce the physician’s workload. Artificially intelligent proteomics 

improves cardiovascular risk assessment by de novo integrin-binding 

structures promote leukocyte recruitment and stimulate expression of 

pro-inflammatory cytokines in the blood vessel wall and may therefore 

represent important new biomarkers of CVD risk that could not be 

predicted based on earlier research. He combines protein expression 

levels and PTM data with DPM profiles and analyses of EV cargo, 

thereby defining more effective bio-signatures of clinical course in multi 

factorial disorders such as CVD. 
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Conclusion 

 

Traditional approaches of drug design were expensive and time-

consuming. Over the past 25 years, medicinal chemistry has applied AI 

in various forms and with varying degrees of success to develop and 

design the compound and medicinal use. AI helps in the design of new 

inputs, i.e. drug discovery process from target selection, lead 

identification, and lead optimization to preclinical studies and clinical 

trials. From the above description, it is concluded AI can design new 

chemical structures effectively, predicted for the desired molecular 

property profiles, how to synthesize active compounds; identify the 

disease, physical parameter for the medical purpose. 

 

Conflicts of Interest 

 

The authors have no other relevant affiliations or financial involvement 

with any organization or entity with a financial interest in or financial 

conflict with the subject matter or materials discussed in the manuscript 

apart from those disclosed.  

REFERENCES 

 

1. Ai T, Yang Z, Hou H, Zhan C, Chen C (2020) Correlation of Chest CT 

and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in 

China: A Report of 1014 Cases. Radiology 296: E32-E40. [Crossref] 

2. Ivanenkov YA, Zhavoronkov A, Yamidanov RS, Osterman IA, Sergiev 

PV et al. (2019) Identification of Novel Antibacterials Using Machine 

Learning Techniques. Front Pharmacol 10: 913. [Crossref] 

3. Athreya AP, Gaglio AJ, Cairns J, Kalari KR, Weinshilboum RM et al. 

(2018) Machine Learning helps Identify New Drug Mechanisms in 

Triple Negative Breast Cancer. IEEE Trans Nanobioscience 17: 251-

259. [Crossref] 

4. Chen X, Chen HY, Chen ZD, Gong JN, Chen CY (2020) A Novel 

Artificial Intelligence Protocol for Finding Potential Inhibitors of Acute 

Myeloid Leukemia. J Mater Chem B 8: 2063-2081. [Crossref] 

5. Workman P, Antolin AA, Lazikani BA (2019) Transforming cancer 

drug discovery with Big Data and AI. Expert Opin Drug Discov 14: 

1089-1095. [Crossref] 

6. Chan HP, Samala RK, Hadjiiski LM (2020) CAD and AI for Breast 

Cancer-Recent Development and Challenges. Br J Radiol 93: 

20190580. [Crossref] 

7. Jalalian A, Mashohor SBT, Mahmud HR, Saripan MIB, Ramli ARB et 

al. (2013) Computer-aided Detection/Diagnosis of Breast Cancer in 

Mammography and Ultrasound: a Review. Clin Imaging 37: 420-426. 

[Crossref] 

8. Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ (2019) Artificial 

intelligence in breast imaging 74: 357-366. [Crossref] 

9. Basu S, Vellakkal S, Agrawal S, Stuckler D, Popkin B et al. (2014) 

Averting obesity and Type 2 Diabetes in India through Suga-Sweetened 

Beverage Taxation: An Economic Epidemiologic Modeling Study. 

PLoS Med 11: e1001582. [Crossref] 

10. Santana KD, Oscar M, Borroto R, Puris A, Le Thi Thu H et al. (2017) 

A Two QSAR Way for Antidiabetic Agents Targeting Using α-

Amylase and α-Glucosidase Inhibitors: Model Parameters Settings in 

Artificial Intelligence Techniques. Lett Drug Design Discov 14: 1-7.  

11. Contreras I, Vehi J (2018) Artificial Intelligence for Diabetes 

Management and Decision Support: Literature Review. J Med Internet 

Res 20: 5e1075. [Crossref] 

12. Bozidara C, Urska P, Anton G, Mitja L (2016) Monitoring Patients with 

Diabetes Using Wearable Sensors: Predicting Glycaemias Using ECG 

and Respiration Rate. 22nd Eur Confe AI 18-21.  

13. Sze SK (2019) Artificially intelligent proteomics improves 

cardiovascular risk assessment. EBioMedicine 40: 23-24. [Crossref] 

14. Herrero P, ́ Opez BL, Martin C (2016) PEPPER: Patient Empowerment 

Through Predictive Personalised Decision Support. Artificial 

Intelligence for Diabetes. 22nd Eur Confere AI 8-10.  

15. Herrero P, Bondia J, Pesl P, Oliver N, Georgiou P (2016) Enhancing an 

Artificial Pancreas with an Adaptive Bolus Calculator based on Case-

Based Reasoning. AI for Diabetes. 22nd Eur Confere AI 10-12.  

16. Arshadi AK, Salem M, Collins J, Yuan JS, Chakrabarti D (2020) Deep 

Malaria: Artificial Intelligence Driven Discovery of Potent 

Antiplasmodials. Fro Pharmacol 10: 1526. [Crossref] 

17. Maindola P, Jamal S, Grover A (2015) Cheminformatics Based 

Machine Learning Models for AMA1-RON2 Abrogators for Inhibiting 

Plasmodium Falciparum Erythrocyte Invasion. Mol Inform 34: 655-

664. [Crossref] 

18. Lima MNN, Cassiano GC, Tomaz KC, Silva AC, Sousa BKP et al. 

(2019) Integrative Multi-Kinase Approach for the Identification of 

Potent Antiplasmodial Hits. Front Chem 7: 773. [Crossref] 

19. Neves BJ, Braga RC, Alves VM, Lima MNN, Cassiano GC et al. 

(2020) Deep Learning-driven research for drug discovery: Tackling 

Malaria. PLoS Comput Biol 16: e1007025. [Crossref] 

20. Wicht KJ, Combrinck JM, Smith PJ, Egan TJ (2015) Bayesian models 

trained with HTS data for predicting β-haematin inhibition and in vitro 

antimalarial activity. Bioorg Med Chem 23: 5210-5217. [Crossref] 

21. Romm EL, Tsigelny IF (2020) Artificial Intelligence in Drug 

Treatment. Annu Rev Pharmacol Toxicol 60: 353-369. [Crossref] 

22. Zoffmann S, Vercruysse M, Benmansour F, Maunz A, Wolf L et al. 

(2019) Machine learning-powered antibiotics phenotypic drug 

discovery. Sci Rep 9: 5013. [Crossref] 

23. Zhavoronkov A , Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy 

VA et al. (2019) Deep learning enables rapid identification of potent 

DDR1 kinase inhibitors. Nat Biotechnol 37: 1038-1040. [Crossref] 

24. Durrant JD, Amaro RE (2015) Machine-Learning Techniques Applied 

to Antibacterial Drug Discovery. Chem Biol Drug 85: 14-21. [Crossref] 

25. González AR, Zanin M, Ruiz EM (2019) Public Health and 

Epidemiology Informatics: Can Artificial Intelligence Help Future 

Global Challenges? An Overview of Antimicrobial Resistance and 

Impact of Climate Change in Disease Epidemiology. Yearb Med Inform 

28: 224-232. [Crossref] 

26. Santosh KC (2020) AI-Driven Tools for Coronavirus Outbreak: Need 

of Active Learning and Cross-Population Train/Test Models on 

Multitudinal/Multimodal Data. J Med Syst 44: 93. [Crossref] 

27. Dasheng Li, Wang D, Dong J, Wang N, Huang H et al. (2020) False-

Negative Results of Real-Time Reverse-Transcriptase Polymerase 

Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 

2: Role of Deep-Learning-Based CT Diagnosis and Insights from Two 

Cases. Korean J Radiol 21: 505-508. [Crossref] 

28. Li L, Qin L, Xu Z, Yin Y, Wang X et al. (2020) Artificial Intelligence 

Distinguishes COVID-19 From Community Acquired Pneumonia on 

Chest CT. Radiology 19: 200905. [Crossref] 

https://pubmed.ncbi.nlm.nih.gov/32101510/
https://pubmed.ncbi.nlm.nih.gov/31507413/
https://pubmed.ncbi.nlm.nih.gov/29994716/
https://pubmed.ncbi.nlm.nih.gov/32068215/
https://pubmed.ncbi.nlm.nih.gov/31284790/
https://pubmed.ncbi.nlm.nih.gov/31742424/
https://pubmed.ncbi.nlm.nih.gov/23153689/
https://pubmed.ncbi.nlm.nih.gov/30898381/
https://pubmed.ncbi.nlm.nih.gov/24409102/
https://pubmed.ncbi.nlm.nih.gov/29848472/
https://pubmed.ncbi.nlm.nih.gov/30651217/
https://pubmed.ncbi.nlm.nih.gov/32009951/
https://pubmed.ncbi.nlm.nih.gov/27490966/
https://pubmed.ncbi.nlm.nih.gov/31824917/
https://pubmed.ncbi.nlm.nih.gov/32069285/
https://pubmed.ncbi.nlm.nih.gov/25573118/
https://pubmed.ncbi.nlm.nih.gov/31348869/
https://pubmed.ncbi.nlm.nih.gov/30899034/
https://pubmed.ncbi.nlm.nih.gov/31477924/
https://pubmed.ncbi.nlm.nih.gov/25521642/
https://pubmed.ncbi.nlm.nih.gov/31419836/
https://pubmed.ncbi.nlm.nih.gov/32189081/
https://pubmed.ncbi.nlm.nih.gov/32174053/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233473/


AI – New Avenue for Drug Discovery and Optimization              9 

 

Clin Oncol Res  doi:10.31487/j.COR.2021.01.02       Volume 4(1): 9-9 

29. Rao ASR, Vazquez JA (2020) Identification of COVID-19 Can Be 

Quicker Through Artificial Intelligence Framework Using a Mobile 

Phone-Based Survey in the Populations When Cities/Towns Are Under 

Quarantine. Infect Control Hosp Epidemiol 41: 826-830. [Crossref] 

30. Allam Z, Jones DS (2020) On the Corona virus (COVID-19) Outbreak 

and the Smart City Network: Universal Data Sharing Standards 

Coupled With Artificial Intelligence (AI) to Benefit Urban Health 

Monitoring and Management. Healthcare (Basel) 8: 46. [Crossref] 

31. Zhou M, Xu R, Kaelber DC, Gurney ME (2020) Tumor Necrosis Factor 

(TNF) blocking agents is associated with lower risk for Alzheimer’s 

disease in patients with rheumatoid arthritis and psoriasis. PLoS One 

15: e0229819. [Crossref] 

32. Russo DP, Zorn KM, Clark AM, Zhu H, Ekins S (2018) Comparing 

Multiple Machine Learning Algorithms and Metrics for Estrogen 

Receptor Binding Prediction. Mol Pharm 15: 4361-4370. [Crossref] 

33. Zhang L, Tan J, Han D, Zhu H (2017) From machine learning to deep 

learning: progress in machine intelligence for rational drug discovery. 

Drug Discov Today 22: 1680-1685. [Crossref] 

34. Zafeiris D, Rutella S, Ball GR (2018) An Artificial Neural Network 

Integrated Pipeline for Biomarker Discovery Using Alzheimer's 

Disease as a Case Study. Comput Struct Biotechnol J 16: 77-87. 

[Crossref] 

35. Lin E, Lin CH, Lane HY (2020) Precision Psychiatry Applications with 

Pharmacogenomics: Artificial Intelligence and Machine Learning 

Approaches. Int J Mol Sci 21: 969. [Crossref] 

36. Wu K, Zhao Z, Wang R, Wei GW (2018) TopP-S: Persistent 

homology‐based multi‐task deep neural networks for simultaneous 

predictions of partition coefficient and aqueous solubility. J Computat 

Chem 39: 1444-1454. [Crossref] 

37. Wu J, Zhang Q, Wu W, Pang T, Hu H et al. (2018) WDL-RF: Predicting 

Bioactivities of Ligand Molecules Acting With G Protein-Coupled 

Receptors by Combining Weighted Deep Learning and Random Forest. 

Bioinformatics 34: 2271-2282. [Crossref] 

38. Schroeter TS, Schwaighofer A, Mika S, Laak AT, Suelzle D et al. 

(2007) Machine learning models for lipophilicity and their domain of 

applicability. Mol Pharm 4: 524-538. [Crossref] 

39. Schroeter TS, Schwaighofer A, Mika S, Laak AT, Suelzle D et al. 

(2007) Machine learning models for lipophilicity and their domain of 

applicability. Mol Pharm 4: 524-538. [Crossref] 

40. Cui Q, Lu S, Ni B, Zeng X, Tan Y et al. (2020) Improved Prediction of 

Aqueous Solubility of Novel Compounds by Going Deeper With Deep 

Learning. Front Oncol 10: 121. [Crossref] 

41. Stokes JM, Yang K, Swanson K, Jin W, Cubillos Ruiz A et al. (2020) 

A Deep Learning Approach to Antibiotic Discovery. Cell 180: 688-

702. [Crossref] 

42. Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep 

learning in chemoinformatics: the prediction of aqueous solubility for 

drug-like molecules. Chem Inf Model 53: 1563-1575. [Crossref] 

43. Kiddlea SJ, Voylea N, Dobson RJ (2018) A Blood Test for Alzheimer's 

Disease: Progress, Challenges, and Recommendations. J Alzheimers 

Dis 64: 1. [Crossref] 

44. Han G, Wang J, Zeng F, Feng X, Yu J et al. (2013) Characteristic 

transformation of blood transcriptome in Alzheimer's disease. J 

Alzheimers Dis 35: 373-386. [Crossref] 

45. Zhao J, Zhu L, Zhou W, Yin L, Wang Y et al. (2018) In Silico 

Prediction of Inhibitory Constant of Thrombin Inhibitors Using 

Machine Learning. Comb Chem High Throughput Screen 21: 662-669. 

[Crossref] 

46. Prahs P, Raeck V, Mayer C, Cvetkov Y, Cvetkova N et al (2018) OCT-

based deep learning algorithm for the evaluation of treatment indication 

with anti-vascular endothelial growth factor medications. Graefes Arch 

Clin Exp Ophthalmol 256: 91-98. [Crossref] 

47. Woo G, Fernandez M, Hsing M, Lack NA, Cavga AD et al. (2020) 

Deep COP: deep learning-based approach to predict gene regulating 

effects of small molecules. Bioinformatics 36: 813-818. [Crossref] 

48. Nguyen DD, Cang Z, Wu K, Wang M, Cao Y et al. (2019) 

Mathematical deep learning for pose and binding affinity prediction 

and ranking in D3R Grand Challenges. J Comp Aided Mol Des 33: 71-

82. [Crossref] 

49. Sellwood MA, Ahmed M, Segler MH, Brown N (2018) Artificial 

intelligence in drug discovery. Future Med Chem 10: 2025-2028. 

[Crossref] 

50. Mutasa S, Chang PD, Shapiro CR, Ayyala R (2018) MABAL: a Novel 

Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. 

J Digital Imaging 31: 513-519. [Crossref] 

51. Sushko I, Salmina E, Potemkin VA, Poda G, Tetko IV (2012) 

ToxAlerts: A Web Server of Structural Alerts for Toxic Chemicals and 

Compounds with Potential Adverse. Reactions. J Chem Inf Model 52: 

2310-2316. [Crossref] 

52. Hirasawa T, Ikenoyama Y, Horie Y, Ishioka M, Tamashiro A et al. 

(2019) Endoscopic Diagnosis Using Artificial Intelligence. Gan To 

Kagaku Ryoho 46: 412-417. [Crossref] 

53. Burt JR, Torosdagli N, Khosravan N, RaviPrakash H, Mortazi A (2018) 

Deep learning beyond cats and dogs: recent advances in diagnosing 

breast cancer with deep neural networks. Br J Radiol 91: 20170545. 

[Crossref] 

54. Johnson KW, Soto JT, Glicksberg BS, Shameer K, Miotto R et al. 

(2018) Artificial Intelligence in Cardiology. J Am Coll Cardiol 71: 

2668-2679. [Crossref] 

55. Zhou LQ, Wang JY, Yu SY, Wu GG, Wei Q et al. (2019) Artificial 

intelligence in medical imaging of the liver. World J Gastroenterol 25: 

672-682. [Crossref] 

 

https://pubmed.ncbi.nlm.nih.gov/32122430/
https://pubmed.ncbi.nlm.nih.gov/32120822/
https://pubmed.ncbi.nlm.nih.gov/32203525/
https://pubmed.ncbi.nlm.nih.gov/30114914/
https://pubmed.ncbi.nlm.nih.gov/28881183/
https://pubmed.ncbi.nlm.nih.gov/29977480/
https://pubmed.ncbi.nlm.nih.gov/32024055/
https://pubmed.ncbi.nlm.nih.gov/29633287/
https://pubmed.ncbi.nlm.nih.gov/29432522/
https://pubmed.ncbi.nlm.nih.gov/17637064/
https://pubmed.ncbi.nlm.nih.gov/17637064/
https://pubmed.ncbi.nlm.nih.gov/32117768/
https://pubmed.ncbi.nlm.nih.gov/32084340/
https://pubmed.ncbi.nlm.nih.gov/23795551/
https://pubmed.ncbi.nlm.nih.gov/29614671/
https://pubmed.ncbi.nlm.nih.gov/23411692/
https://pubmed.ncbi.nlm.nih.gov/30569853/
https://pubmed.ncbi.nlm.nih.gov/29127485/
https://pubmed.ncbi.nlm.nih.gov/31504186/
https://pubmed.ncbi.nlm.nih.gov/30116918/
https://pubmed.ncbi.nlm.nih.gov/30101607/
https://pubmed.ncbi.nlm.nih.gov/29404850/
https://pubmed.ncbi.nlm.nih.gov/22876798/
https://pubmed.ncbi.nlm.nih.gov/30914574/
https://pubmed.ncbi.nlm.nih.gov/29565644/
https://pubmed.ncbi.nlm.nih.gov/29880128/
https://pubmed.ncbi.nlm.nih.gov/30783371/

