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A B S T R A C T 

The developing brain is especially sensitive to perturbations such as hypoxia-ischemia (HI) or surgical 

ablation in the perinatal period. We first review and contrast the effects perinatal HI and surgical 

perturbation in laboratory rats. The developing brain is also very responsive to a wide range of other 

experiences that can induce remarkable neural plasticity in both the normal and perinatally injured brain. 

We next review the factors that influence this plasticity in both the normal and perinatal injured. We consider 

treatments that stimulate cerebral and behavioural plasticity, especially in the motor systems. The goal is to 

draw attention to possible treatments that could be translated from perinatal surgical ablation to the HI model 

and eventually to the clinic. 
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Introduction 

 

The incidence of brain injury in babies is relatively high ranging from 

about 3 per 1000 in full term infants to about 25 per 1000 in preterm 

births (babies born at or less than 37 weeks) [1, 2]. The only effective 

treatment that is standard practice is hypothermia, but preclinical studies 

in laboratory animals have examined a wide range of other options 

ranging from neuroprotective agents to behavioral therapies. The 

neuroprotective therapies have been reviewed in detail recently so our 

focus will be on other types of therapies that have been shown to 

positively influence functional recovery [2]. Here we briefly review the 

stages of brain development and neural plasticity before examining 

models of perinatal brain injury and the major factors that modulate brain 

development after perinatal surgical ablation and HI brain injury. 

 

Although there are large literatures on both surgical ablation and HI 

models, these literatures have very different emphases. The surgical 

ablation studies have focussed on studying cerebral and behavioral 

plasticity during development whereas the HI studies have focussed 

more on mechanisms of injury, especially related to cerebral palsy, and 

possible clinical applications. One goal of this review is to demonstrate 

that these two solitudes have much to offer each other and should be seen 

as complementary. Because the HI model studies have often been 

focussed more on cerebral palsy, which is associated with significant 

motor disturbances, our emphasis is on examination of motor system 

plasticity in both the surgical ablation and HI studies.  

 

Periods of Development 

 

We can conceive of development as broadly falling into three stages, 

each of which can influence recovery from perinatal injury. The first, 

preconception, reflects how experiences can modify brain development 

by the (re)programming of later gene activity in the oocyte (in dams) and 

spermatocytes (in males). In other words, experiences can influence the 

expression of genes [3, 4]. Given that the male sperm cells turn over 

about every 60-90 days, experiences during this period can significantly 

alter the pattern of chromatin and histone formation, leading to changes 

in gene expression, and thus differences in the brains of animals with 

varying preconception experiences [5]. 

 

The second stage in placental mammals is the sequence of events in utero 

in which there is a genetically determined sequence of events that can be 

modulated by the maternal environment. This environment can be 

affected by stress, diet, drugs, etc. experienced directly by the mother, 

but can indirectly influence the developing infant through the placental 

blood. In utero brain development begins with the generation of neurons, 

which in rats is on embryonic (E) day 10.5-11 and in humans is around 
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E28 making the nervous system one of the earliest human body systems 

to begin growing but the last to be completed. Neurogenesis is largely 

complete by birth (E21) in rats and about 5 months gestation in humans, 

although the rate and duration of neurogenesis varies with brain region 

(see https://embryology.med.unsw.edu.au). 

 

As neurons are formed, they begin their migration to their final 

destination. The traditional view is that in rats and mice this continues 

into the postnatal period for about a week but is largely complete in 

human cerebral cortex by birth. There is some debate, however, over 

whether these conclusions are accurate. Mortera & Herculano-Houzel 

used a different method of cell counting (the istropic fractionator) to 

determine total numbers of neuronal and non-neuronal cells in the rat, 

and found that there is an increase in neuron number between 1-2 mo of 

age, which corresponds to the period of adolescence [6]. It is not yet 

known if a similar phenomenon occurs in humans, but if so, it would be 

an important time to target treatments to enhance neurogenesis that is 

already in progress [7]. 

 

The third stage is postnatal at a time that the brain is actively forming 

connections. Neural migration is mostly complete by about P7 in rats (P1 

month in humans); the most intense dendritic growth is around P14 in 

rats (P8 months in humans); and, maximum synaptic density is reached 

about P35 in rats but in humans it ranges from about 2-5 years depending 

upon the location [8-10]. At the peak of synaptogenesis, the cerebral 

synapses are over-produced to about two times the adult number and in 

the prefrontal cortex are pruned during adolescence [9]. 

 

 During the postnatal period the brain is strongly influenced by the ex 

utero environment, which includes all manner of experiences ranging 

from maternal-offspring interactions to sensory inputs (light, sound, 

touch, etc.), diet, stress, and so on. As in the second stage, these 

experiences can act to regulate gene expression leading to altered 

developmental outcomes [5]. This stage is prolonged, continuing well 

into the third decade of life in humans [11]. 

 

General Types of Brain Plasticity in Development 

 

Brain plasticity can be shown using many levels of analysis ranging from 

behavior to molecules. Studies of human participants are largely 

restricted to studies of behaviour and functional organization using 

noninvasive imaging [12]. Studies of laboratory animals can include 

behaviour and noninvasive imaging but have the advantage of also being 

able to use more invasive imaging and to examine neuronal morphology, 

molecular structure, and epigenetics [13]. There is no correct level of 

analysis, the choice being suited to the questions asked and technology 

available. In our studies, we have chosen to use a combination of 

behaviour, neurophysiologically-defined motor maps, dendritic/synaptic 

morphology, neuronal generation, and epigenetics. 

 

Three special features of developmental plasticity are especially 

important. The first feature is found in the cells lining the subventricular 

zone (SVZ) of the lateral ventricles and cells in the hilus of the dentate 

gyrus. Both regions contain stem cells that remain active throughout life. 

The cells in the SVZ produce both glial and neural progenitor cells that 

can migrate into cerebral gray or white matter, even in adulthood. The 

SVZ cells in rodents appear mostly quiescent but can become activated, 

largely in response to cerebral perturbations. For example, after perinatal 

injury these cells can produce neurons either spontaneously or in 

response to growth factors such as Fibroblast Growth Factor-2 (FGF-2) 

[14, 15]. In rodents, the SVZ stem cells also generate a continual stream 

of neural progenitors that travel to the olfactory bulb. Stem cells in the 

dentate gyrus generate new neurons at a slow but steady pace throughout 

life in both rodents and humans, although there is a decline with aging 

[16]. An important aspect of stem cell activity in the young brain is that 

it is possible to stimulate neurogenesis after an injury to facilitate 

recovery. 

 

A second special feature of developmental plasticity is the speed at 

which dendrites, and especially dendritic spines, can modify their 

structure to form or delete synapses in response to experience, possibly 

in a matter minutes [17]. Modern neuroimaging technology such as two-

photon imaging has allowed researchers to observe changes in spines as 

they occur in laboratory rodents [18]. Furthermore, it has recently 

become possible to use injections of radioligands with advance Positron 

Emission Tomography to imagine in vivo synaptic density in humans, 

although this has not yet been applied to the developing brain. 

Remodeling of dendritic fields is a key aspect of cerebral plasticity 

following early injury. 

 

A final special feature is the presence of critical periods, especially for 

experience-expectant plasticity. One of the best studied phenomena was 

first described by Wiesel & Hubel who showed that if one eye of a kitten 

is kept closed after birth, the open eye expands its territory at the expense 

of the closed eye [19]. When the closed eye is eventually opened after a 

few months, its vision is compromised, resulting in an enduring loss of 

spatial vision (amblyopia) [20]. Recent work has shown that the critical 

period results from an appropriate balance of excitatory and inhibitory 

inputs (E/I). The maturation of inhibitory GABA circuits underlies the 

timing of onset of the critical periods, which vary across brain regions. 

Premature onset of the critical period is prevented by various factors 

including polysialic acid acting on neural cell adhesion molecules, which 

act on parvalbumin (PV) in GABA interneurons. 

 

As other factors promote PV cell maturation the critical period begins. 

The critical period closes as molecular brakes emerge to dampen 

plasticity, alter the and thus limit adult plasticity [21]. A key point is that 

it is possible to reopen the critical period by manipulating the E/I balance 

chemically, providing a novel mechanism to stimulate recovery after 

perinatal injury. Although critical periods have historically been thought 

of as occurring early in postnatal development, there is growing evidence 

that adolescence may also be a critical period of neuronal plasticity [22]. 

Recall that Mortera & Herculano-Houzel [6] found evidence of cortical 

neurogenesis in puberty and maximum synaptic pruning in the prefrontal 

cortex also occurs during puberty [10]. Although we are not aware of lab 

studies that have delayed treatment for perinatal injury until puberty, it 

is possible that this may be an important therapeutic target time. 

 

Models of Perinatal Brain Injury 

 

In humans, perinatal brain injury can occur in both term and preterm 

infants. For term infants, the most common causes are hypoxia-ischemia 

or stroke, both of which lead to either focal or diffuse the death of 

neurons and glia. Cerebral injury in preterm infants is most often caused 
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by chronic hypoxia resulting from immature lung development, but may 

also be related to infection/inflammation, which can continue 

postnatally, and intrauterine growth restriction [23, 24]. An increasingly 

common view of the complex nature of these types of perinatal injury 

involves antenatal factors (e.g., inflammation, maternal stress, genetic 

factors) that sensitize the brain making it more susceptible to a second 

perinatal insult such as HI or inflammation [25]. The postnatal sequelae 

of HI injuries are complex including the overproduction of glutamate, 

which is toxic, as well as increased pro-inflammatory cytokines, 

oxidative stress, disruption of glial maturation, and alteration of the 

extracellular matrix and perturbed maturation of neurons and glia [24, 

26, 27]. The effect of these complications is that injuries are seldom focal 

but may be somewhat diffuse. 

 

Animal models of HI perinatal injury most commonly use rats or mice 

[24]. Examples include either rearing animals with low levels of oxygen 

between postnatal (P) days 3 and 11 (a preterm model), or hypoxic-

ischemic injury in which carotid artery occlusion is followed by hypoxia, 

typically from P3-P9 [28]. Other studies have combined HI and 

inflammation using a single dose of lipopolysaccharide (LPS) at P7 

before unilateral occlusion as above [29]. 

 

Although the ideal model for perinatal hypoxia-ischemia (HI) in human 

infants might be the HI rodent model, there are other models that provide 

some advantages. The earliest systematic laboratory studies of early 

brain injury are those of Margaret Kennard who studied the effect of 

motor cortex lesions in infant monkeys [30, 31]. She compared the effect 

of unilateral motor cortex lesions in infant and adult monkeys finding 

milder impairments in the infants [3]. In these studies, anesthetized 

animals had the skull opened and tissue removed using gentle subpial 

aspiration, which is radically different than the effects of HI discussed 

earlier. Although Kennard did not study the postinjury changes in the 

brain of her monkeys, she did speculate on possible effects of the injuries 

on synaptic organization. It was Kennard’s studies that led to the idea 

that postnatal cortical injury early in development is associated with a 

better outcome than surgery later, an idea often referred to as the 

“Kennard Principle.” 

 

By the 1970s an extensive literature began to accumulate with studies in 

monkeys, cats, ferrets, and various rodents (rats, mice, hamsters) 

receiving similar cortical ablation surgeries. The advantage of these 

studies is that the injuries can be directed to specific cortical regions, 

such as prefrontal or visual cortex, which is not practical with the HI 

lesion because there is no direct cerebral injury [32, 33]. HI injuries are 

quite variable (see Figure 1) with a general finding roughly half of the 

HI animals have infarctions [24]. More recent studies have used 

neurotoxins to produce focal injury, but these neurotoxins are difficult 

to use in the developing brain and do not work quite the same as in 

adulthood. One disadvantage of the ablation model is that the skull is 

opened, which is rare in children. Another disadvantage is that in 

contrast to the HI models there has been surprisingly little study of the 

postinjury sequela of the surgical interventions other than an 

examination of glial and neuronal death and genesis and changes in 

cerebral connectivity [33]. It is likely, however, that many of the post HI 

sequelae will also be occurring in the surgically perturbed brain. 

 

The studies of HI/inflammation and surgical ablation are clearly aimed 

at answering different questions, but the two types of studies should be 

complementary. After all, they are both about the postinjury effects of 

perinatal injury and both models have studies looking at remedial 

treatments (see below). There are very few direct comparisons of the two 

types of etiologies, however. Our own studies began with surgical 

ablations at a variety of ages and places in the cerebral cortex and various 

treatments were used to stimulate recovery (or not) [34]. Based on these 

latter studies we shifted to the Vannucci model and used some of the 

same treatments as in our ablation studies as a proof of principle that the 

type of injury was much less important than the type of intervention [28]. 

 

One challenge in doing pre-clinical studies is in determining appropriate 

ages to compare lab animals and humans. For the ablation studies this is 

not usually an issue as the research question is really about how the brain 

responds to early injury at different developmental times but for the HI 

studies the question is more directly aimed at clinical issues. P7 is the 

most commonly used age for HI studies and the implication is that it is 

roughly equivalent to term infants. But for the purposes of comparison 

across the surgical ablation and HI studies we also consider other ages. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A comparison of two brains with P7 HI events in which both 

animals received permanent coagulation of the right common carotid 

artery and exposure to hypoxia (8% O2 for 1.5h). The right hemisphere 

is shrunken in both cases but there is obvious infarction in the severe 

case [35]. 

 

The Effects of Perinatal Ablations 

 

As noted above, the first systematic ablation studies were those of 

Margaret Kennard who made unilateral motor cortex lesions in infant 

and adult monkeys and found milder impairments in her younger 

animals. Kennard was aware that her monkeys still had motor deficits 

but her studies led to the idea that “earlier is better” [36]. In contrast, in 

his studies of children with perinatal frontal lobe injuries Hebb 

concluded that “earlier is worse” because the frontal injury was 

interfering with developing neural networks [37-39]. Subsequent 

laboratory studies over the past 40 years have shown that the outcomes 

depend up the precise age at injury, age at assessment, whether injury 

the injury is bilateral or unilateral, and the behavioral measurements 

used. A key consideration is not the age post birth in different species 

but rather the post conception developmental age. Rats and mice are born 

sooner post conception, and thus less developed, than cats, for example, 

and monkeys are born more mature than cats or humans. 

 

Examination of the effect of early cortical injuries in rats has compared 

the effects of lesions at different ages on a wide range behavioral 
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measures including cognitive, motor, and species typical tests [33]. In 

general, the results across studies using rodents show that bilateral focal 

damage to presumptive medial prefrontal cortex (mPFC) during the 

latter part of neurogenesis (E18 in rats) allows good outcomes even 

though the brain is strikingly abnormal [40]. For example, there are gross 

abnormalities in frontal cortical architecture including both gray and 

white matter. This abnormal morphology is particularly striking given 

that the functional outcomes in these animals is essentially 

indistinguishable from normal control animals. Damage to the mPFC 

during neural migration and early synapse formation (P1-6 in rats) leads 

to severe behavioral and neural abnormalities: the brains are very small, 

the entire cortical mantle is thin, and there is marked dendritic stunting 

[41-43]. In contrast, damage during dendritic and synaptic expansion 

(P7-12 in rats) leads to a much better functional outcome, which is 

correlated with dendritic hypertrophy and spontaneous neurogenesis [14, 

43, 44]. We note here, that although lesions at P7-12 allow good 

recovery of cognitive behaviors, there is less recovery of motor 

behaviors and no recovery of species typical behaviors [45]. 

 

Similar patterns of age-related functional outcomes can be seen in cats 

and monkeys although the ages vary because of differences in gestational 

rate [46, 47]. The age-related differences in outcome is important for 

studies of the effects of treatments, in part because animals with mild 

deficits show less benefit than animals with more severe impairments. 

In contrast to the effects of bilateral focal lesions, large unilateral lesions 

(e.g., hemidecortication) show a different pattern of results in which the 

earliest injuries (P1-P3) show better outcomes than later injuries (P5, 

P10) [48, 49]. This difference likely reflects the role of the undamaged 

hemisphere in the compensatory mechanisms underlying functional 

recovery. Thus, for example, in contrast to rats with adult 

hemidecortications, rats with hemidecortications in the first few days of 

life have increased cortical thickness in the remaining cortex, even 

though there is no corpus callosum. The compensatory increase in 

cortical thickness is due, in part, to general hypertrophy of cortical 

pyramidal neurons [49]. In addition, there is extensive anomalous wiring 

from the intact hemisphere to contralateral subcortical regions. These 

changes are much attenuated in rats with P10 hemidecortications [49]. 

Curiously, rats with unilateral medial prefrontal lesions have shrunken 

motor maps on the ipsilateral side but relatively normal maps on the 

intact side (Figure 2) [50]. By using intracortical microstimulation 

(ICMS) it is possible to identify two forelimb control regions, a larger 

one referred to as the caudal forelimb area (CFA), and a smaller one 

called the rostral forelimb area (RFA), which is located in front of the 

head area, as shown in (Figure 2). Medial prefrontal cortex lesions at P10 

reduced the size of the ipsilateral CFA and totally removed the RFA, 

even though the maps were quite distal from the lesion site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Forelimb motor maps. Computer-generated graphic showing forelimb motor maps derived from intracortical microstimulation in control (A) and 

unilateral medial frontal cortex suction lesion.  (B) Left to right shows the organization of forelimb representations in naïve, reach trained, and complex 

housed animals. The lesion brain has markedly smaller forelimb representation with a markedly smaller caudal forelimb area (CFA) and no rostral forelimb 

area (RFA). Treatments increased the size of the maps in both intact and lesion animals although the effect was larger in the intact animals. Brown circles 

indicate location of Toludine Blue injections (1,2,3,4) used to mark the extent of the motor maps. Note that there is no shift in motor map position relative 

to the bregma [50]. 
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The Effects of Perinatal HI 

 

It is more difficult to identify age-related differences for the HI injuries 

because most studies that examine behavior after HI have focused on 

injury at P7. Overall, studies have shown a range of behavioral 

phenotypes including motor deficits, impaired spatial memory and 

learning, deficits in sensory processing, and reduced attention [51, 52]. 

In an attempt to compare the effects of ablation and HI results Williams 

did a series of studies comparing the functional effects of HI at P3, P7, 

and P14 on motor behavior and the size of cortical motor maps [53]. By 

using ICMS in anesthetized rats as in the earlier ablation studies (Figure 

2) Williams identified regions of forelimb control. 

The results showed that HI on P7 or P14 impaired skilled reaching 

performance, which was correlated with a reduction in the size of the 

caudal motor representation in adulthood, much as in the ablation study 

[53]. In contrast, HI at P3 resulted in increased size of motor maps on 

the injured hemisphere and better motor performance than seen in the 

animals with later injuries [54]. Figure 3 illustrates effect of P7 HI on the 

motor map relative to a sham map and shows that only the ipsilateral 

hemisphere is affected and that the lesion size illustrated in (Figure 1) 

had no effect on the motor map size. Notice that in contrast to the effect 

of mPFC ablations, the P7HI lesions did not abolish the RFA, even in 

the severely damaged brains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Reconstructed motor maps representing the forelimb derived from intracortical microstimulation in rats with P7 HI injuries. Shown are a typical 

caudal forelimb area (CFA) and rostral forelimb area (RFA) (Sham, top left), and representative map from P7 HI. The CFA is dramatically reduced in size 

in the HI brain [54]. 

 

The Basis of Treatment Strategies for Perinatal Injuries 

 

The place to begin with looking for treatment strategies for cerebral 

injury is to consider the factors positively affecting the synaptic 

organization and function of the normal brain (Table 1). It is clear from 

the table that both behavioural and pharmacological experiences can 

influence brain plasticity and behaviour in the normal brain. We hasten 

to point out that many other factors can also influence brain and 

behaviour, but in a negative manner, the best examples being stress and 

psychoactive drugs [55-57]. 
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Table 1: Factors positively affecting the synaptic organization and 

enhanced behavioural performance in otherwise normal animals. 

Factor Example references 

1. Postnatal complex housing [58] 

2. Preconceptual or prenatal complex 

housing 
[35] 

3. Tactile stimulation (postnatal) [60] 

4. Tactile stimulation (prenatal) [40] 

5. Play (juvenile) [61] 

6. Task learning [62] 

7. Exercise  [63] 

8. Prenatal experiences [64] 

9. Psychoactive drugs (e.g., stimulants) [65] 

10. Neurotrophic factors (e.g., BDNF, 

FGF-2) 
[66] 

11. Diet (e.g., choline) [67] 

12. Anti-inflammatories (e.g., Cox-2 

inhibitors) 
[68] 

 

Applications to The Perinatally Injured Brain 

 

Although many of the treatments used for animals with adult lesions 

have been applied to those with perinatal injuries, the bulk of the studies 

have been on animals with ablations, but there is little reason to believe 

that they will not also be effective in animals with HI injuries. One 

difference in the use of treatments in young versus adult animals is that 

infant animals have a restricted range of behaviors so many behavioral 

therapies cannot be started as quickly in the young animals. But 

pharmacotherapies can be started immediately and, in some cases, 

gestationally. The latter effect is fascinating because the treatment can 

be given before the injury occurs, as might be desirable in clinical 

populations with women at risk for birth complications. 

 

The first type of treatment to be used to stimulate recovery after perinatal 

injury was complex housing. Bland & Cooper first showed that housing 

rats in complex environments after perinatal ablation of the visual cortex 

significantly improved functional outcome and this finding was later 

replicated in kittens with occipital ablations [69, 70]. This general effect 

has been replicated numerous times in animals with perinatal injuries in 

other cortical regions such as motor or medial prefrontal cortex. Indeed, 

in general, housing animals in complex environments that allow social 

interaction, novelty (objects to interact with that are changed regularly) 

and unlimited exercise is one of the most powerful treatments for 

animals with perinatal brain injury, even if it is not begun until 

adulthood. 

 

For example, rats with perinatal mPFC ablations have impairments in 

fine motor tasks such as skilled reaching and grasping and this is 

correlated with abnormal organization of forelimb motor maps, even if 

the motor cortex itself is not injured [50]. Placing similar animals in 

complex environments in adulthood improves skilled motor function, 

which is correlated with reorganization of the motor maps whereby the 

size of the forelimb motor maps increases to roughly normal size (Figure 

2). There are also many studies showing that complex housing also 

improves both motor and cognitive outcomes and increases spine density 

after HI at P7, which nicely parallels the effect on rats with perinatal 

ablations [71, 72]. 

 

Table 2: Factors improving behavior after surgical ablation or HI perinatal injury. 

Factor Model Example References Outcome 

Behavioral therapies 

1. Complex housing at weaning SA [70]  vision 

2. Complex housing in adulthood SA [73]  vision 

3. Complex housing at weaning HI [72] cognition, motor 

4. Tactile stimulation SA [74] motor 

5. Prenatal tactile stimulation SA [59] cognition, motor 

6. Diet (e.g., sulforaphane pre/post) HI [52] cognition, motor 

7. Diet (e.g, vitamin/minerals) SA [75] motor 

8. Mild hypothermia HI [76] cognition, motor 

Pharmacotherapies  

1. FGF-2 SA [77]  vision  
SA [66] cognition, motor 

2. Gestational FGF-2 SA [77] motor 

3. FGF-2 (HI) HI [53] cognition, motor 

4. Nicotine HI [78] cognition, motor 

5. Gestational diazepam SA [79] motor 

6. Docosahexaemoic acid (DHA) HI [80] cognition, motor 

7. Creatine HI [81] motor 

8. Choline SA [82] cognition 

9. BDNF HI [83] cognition 

cognition, motor indicates improved performance on cognitive or motor tasks. 

SA: surgical ablation; HI: hypoxic/ischemic. Treatments are given postinjury unless noted otherwise. 
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Another very strong modulator of perinatal injury is tactile stimulation 

(TS). Gentle stroking with a brush for 15 min, three times per day, for 2 

weeks after P4 mPFC or parietal cortex injury dramatically improves the 

behavioural outcomes in adulthood [74]. One mechanism is an increase 

in Fibroblast Factor-2 (FGF-2) production in the skin. FGF-2 passes the 

blood brain barrier and stimulates receptors in the brain, which in turn 

leads to increased dendritic arborization and spine density in cortical 

pyramidal neurons. Furthermore, tactilely stimulating the pregnant 

females has similar behavioural and anatomical effects on the offspring 

who subsequently have mPFC lesions on P4 [59]. Subcutaneous 

postinjury administration of FGF-2 for 3 days after perinatal injury or to 

the pregnant dams prior to perinatal injury also stimulates improved 

function (Figure 4). Both treatments were effective in dramatically 

reducing the behavioural effects of P4 mPFC or parietal cortex ablation 

lesions [77]. Post HI administration of FGF-2 or nicotine also stimulates 

motor recovery and increases the size of the caudal motor region. The 

increased size is largely due to an increase in representation of the wrist 

and digits, which would mediate the improved skilled reaching. In 

hindsight, it is unfortunate that the authors did not examine for possible 

neurogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Treatment with either FGF-2 or nicotine post P7 HI increases 

the size of the forelimb representation relative to untreated animals and 

this is correlated with enhanced motor performance [53]. 

 

Several studies have shown that if ablation lesions are made from about 

P7- P12 there is spontaneous regeneration of the lost tissue, and this 

appears to result mostly from cells migrating to the lesion cavity from 

the subventricular zone [84]. Similar injuries from P1-5 or after P12 fail 

to do this. Other studies showed a similar effect of other midline ablation 

injuries such as the olfactory bulb or posterior cingulate cortex [85]. 

More lateral lesions do not show this spontaneous regeneration. Because 

FGF-2 stimulates neurogenesis in vitro it reasonable to examine the 

effects of subcutaneous injection of FGF-2 on neurogenesis in vivo. 

Monfils and her colleagues [15, 66] gave rats FGF-2 following neonatal 

motor cortex ablations and found that after injury at P10, but not at P3, 

there was regeneration of the lost tissue and the regenerated tissue was 

functional and showed normal connections to the spinal cord (Figure 5). 

Blockade of the regeneration by embryonic injections of 

Bromodeoxyuridine (BrdU) blocked the regeneration and functional 

recovery, just as it had in the spontaneous regeneration studies [15, 86]. 

 

Although there is a considerable literature on the effects of early-life 

nutrition on normal and abnormal behavioural development, relatively 

little is known about the role of early nutrition and recovery from 

perinatal brain injury. Most research on nutrients in development have 

focused on the effects of nutrient deficiencies especially related to 

protein-energy, iron, zinc, copper, and choline but Kaplan and her 

colleagues have emphasized the importance of using a combination of 

nutrients that would work synergistically to enhance metabolic activity, 

and ultimately brain functioning [87]. One promising product is 

EmpowerPlusTM. This product is a blend of 36 vitamins, minerals, and 

antioxidants and includes a proprietary blend of herbal supplements such 

as gingko bilboa and the amino acid precursors for neurotransmitters: 

choline, phenylalanine, glutamine, and methionine. Halliwell & Kolb 

fed this supplement mixed with regular rat chow to rat dams beginning 

at parturition and continuing until weaning, by which time the pups were 

also eating it [75]. Rats with P4 mPFC lesions showed marked 

improvement in both motor and cognitive functions and increased 

dendritic arbor in cortical pyramidal neurons. The mechanism of the 

dietary effect on neuronal structure may be epigenetic. For example, 

Dominguez-Salaz et al. studied gene methylation in the blood of infants 

conceived either in the Gambian dry or rainy season [88]. The maternal 

diets are dramatically different in the two seasons and so was the pattern 

of gene methylation. 

 

More recently Shaw & Yager reported that feeding dams broccoli 

sprouts from E15 to P14, which is the best source of the powerful 

antioxidant and anti-inflammatory agent sulforaphane [52]. 

Sulforaphane acts to alter the pattern of gene expression in neurons and 

glia and is believed to influence normal brain development. Shaw & 

Yager used a model of placental insufficiency that leads to behavioral 

deficits and damage to the hippocampus and white matter. The offspring 

of the dams fed broccoli sprouts were protected from the behavioral and 

morphological abnormalities. This type of study is encouraging and 

should be expanded to other HI and perinatal ablation models. 

 

Another diet-related treatment is the use of Docosahexaemoic acid 

(DHA), which is a dietary long-chain omega-3 polyunsaturated fatty 

acid with known neuroprotective properties. DHA modulates 

neuroinflammation, oxidative stress, and apoptosis and thus is a good 

candidate for treating HI. Several studies have now shown that DHA, 

and especially in combination with hypothermia, markedly improves 

functional outcome and reduces tissue injury after P7 HI [52]. 
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Figure 5: EMG recordings from the wrist extensors following cortical stimulation in P10 motor cortex ablation rats that received FGF-2 injections. A) A 

summary of the number of rats in each group from which EMG activity could be measured in the wrist extensors. Lesion rats receiving no FGF-2 showed 

no EMG response whereas 5/7 lesion rats with FGF-2 did show normal EMG activity [66]. 

 

There are several proposed mechanisms for the treatment effects. In 

general, when there are beneficial treatment effects there are associate 

changes in neuronal morphology with increased dendritic length and/or 

spine density on cortical pyramidal neurons [34]. For example, these 

changes are seen in rats with other treatments after P4 mPFC ablation 

lesions including FGF-2, vitamin/mineral supplements, nicotine, or 

tactile stimulation [34]. Other studies have found spontaneous 

neurogenesis that regenerates the lost tissue or neurogenesis can be 

stimulated by subcutaneous injections of FGF-2 [14, 15, 66, 85]. There 

is also evidence that perinatal experiences such as stress or complex 

housing produce epigenetic modifications that correlate with functional 

outcomes so it is reasonable to predict that treatments for perinatal 

injuries will also induce epigenetic changes and this has been shown for 

pediatric closed head injuries in rats [89-91]. Given the evidence for 

inflammatory responses after HI injuries it seems likely that effective 

treatments could reduce postinjury inflammation although this has not 

been well studied to date. 

 

Conclusions 

 

The developing brain is responsive to a wide range of factors that 

modulate its development beginning with preconception experiences of 

the parents, gestational experiences, and postnatal experiences. There is 

a large literature showing how the developing brain and behavior can be 

influenced by such factors. The current standard of care for infants with 

perinatal brain injuries is hypothermia but the pre-clinical evidence 

suggests that much more could be done and some of the treatments, such 

as diet and extensive tactile stimulation both gestationally and 

postpartum, could be implemented clinically soon. Indeed, skin to skin 

contact with infants and caregivers (“kangaroo care”) is becoming more 

widely used with premature infants and could be used more widely by 

caregivers once the infants leave the hospital. The pre-clinical data show 

impressive effects on both behavior and brain. Other more invasive 

treatments, such as the pharmacotherapies, are more problematic but an 

understanding of the mechanisms underlying their effectiveness should 

be helpful. 

 

It is known, for example, that tactile stimulation is effective and is 

correlated with increases spontaneous FGF-2 release in the skin. Thus, 

FGF-2 does not need to be given directly. Similarly, the dietary 

treatments are safe and easily implemented, examples being choline or 

broccoli sprouts (a source of sulforaphane). We have considered these 

factors as though they are independent singular events, but as we go 

through life experiences interact to alter both behaviour and brain, a 

process often referred to as metaplasticity. The field has only just begun 

to understand how different factors might interact with one another or 

how the effects of negative factors such as severe stress might be 

ameliorated by experiences such as tactile stimulation. Finally, the next 

step in translation to the clinic will be to demonstrate the efficacy of 

treatments in larger brain pre-clinical models of neonatal brain injury, 

including the use of kittens, fetal sheep, piglets, and nonhuman primates 

[70, 92-94]. 
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