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A B S T R A C T 

c-KIT is a receptor tyrosine kinase reported in, small cell lung cancer and other human cancers. Marketed 

c-KIT inhibitors are suffering from tribulations of getting resistance and/or potential cardio toxicity. To 

identify potential novel c-KIT inhibitors, in the present project work, we have built an atom-featured 3D 

QSAR model using Schrodinger’s Maestro 9.0 molecular modeling suit. The developed 3D QSAR model 

‘ADHRR.21’ is statistically significant (R2=0.8764, Q2 =0.7432) and instituted to be robust enough with 

good predictive accuracy, confirmed by external validation approaches, Y-randomization.  

 

 

 

Introduction 

Mutation in the c-KIT receptor is observed in certain cancer cells. 

Quantification of c-KIT from malignant tissue may help in the prognosis 

and treatment of those types of cancers [1]. Protein tyrosine kinases (PTKs) 

have critical implications in regulatory signaling mechanisms that are 

responsible for growth, activation, differentiation, and transformation [2]. 

c-KIT is also a protein tyrosine kinase (PTK) that is vital for mast cell 

discrimination, propagation, and secretion of cytokines [3]. c-KIT is a 

component of the platelet derived growth factor receptor (PDGFR) family 

categorized as type-III RTK (receptor tyrosine kinase) [4]. A mutation in c-

KIT kinase reduces its binding to the stem cell factor. This binding has 

implications in several human tumors, including gastrointestinal stromal 

tumors, myeloid leukemia, germ cell tumors, and in mastocytosis [5]. The 

over expression of the c-KIT proto-oncogene has also been observed in, 

small cell lung cancer [6]. The percentage of functional mutation associated 

with c-KIT in various cancers is as follows, gastrointestinal stromal tumors 

(90%), mastocytomas (70%), Sino nasal T–cell lymphomas (16%), and 

seminomas/dysgerminomas (9%) [7]. 
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Imatinib mesylate (Glivec) is the first small molecule RTK inhibitor, shown 

significant results in the management of several cancers. It is effective 

against multi-receptor targets (tyrosine kinases) including c-KIT. This drug 

has also shown remarkable results for the treatment of tumors concerning 

PDGFR’s, such as dermato fibrosarcoma protuberans and glioblastoma [8]. 

c-KIT receptor also involved in the inflammatory and autoimmune diseases 

related to mast cells [9, 10]. Some preclinical studies on Glivec revealed 

that, it is efficient against mast cells in rodent arthritis models [11]. Another 

drug, Sunitinib malate (Sutent), is also an anti-angiogenic multi targeted 

PTK inhibitor viz. c-KIT, PDGFR, Fms like tyrosine kinase (sFlt1) and 

VEGFR [8]. Imatinib mesylate & Sunitinib malate both drugs were found 

to be victims of getting resistance by secondary mutation D816H/V, 

N822K, Y822K, A829P that are situated in the activation loop (A-loop) of 

the KIT catalytic site [12]. 

 

Sunitinib is a prototype from the indolin–2–one’s structural scaffolds as 

RTKI however; several other reports are available on c-KIT inhibitors 

containing indolin–2–one scaffolds [13, 14]. To our knowledge so far, very 

less reports are available, to get insight of structural features essentiality 

towards c-KIT inhibition and pharmacophore modeling for the design and 

discovery of novel c-KIT inhibitors [15]. In one report, 3D pharmacophore 

mapping is performed on diaryl urea series as c-KIT antagonists, but due to 

lack of molecular docking study, understanding of actual binding of the 

inhibitors to the receptor is ambiguous [5]. 

 

The objective was developing an in-silico pharmacophore model and 

docking study on previously reported inhibitors. Pharmacophore and 

quantitative structural activity relationship (QSAR) are the ligand-based 

molecular modeling techniques. These techniques apply general studies 

associated with the interaction of various molecules with the same target, 

that may comprise similar structural or physiochemical properties. The 

correct pharmacophore model gives the information regarding hydrogen 

binding properties (acceptor or donor), hydrophobic properties, and 

aromatic functionality presented by compounds in the dataset. This 

information could be exploited for the characterization of structurally 

diverse compounds acting on the same bio-molecules [16]. 

 

Three dimensional (3D) QSAR study considers 3D conformers in the space 

and covers overall force field around a molecule instead of only 

spotlighting pharmacophoric information [17]. 3D QSAR takes the account 

of electrostatic, steric, hydrophobic interactions and hydrogen-bond 

donor/acceptor factors for the force field calculations. This calculation 

gives the best results when interacting ligands share unique structural 

scaffold [18]. So, pharmacophore modeling and 3D QSAR can be useful 

for lead optimization or lead modification by rational drug design approach. 

On this ground, to develop a true pharmacophore that is required for the c-

KIT activity, we have chosen 3- pyrrolo [β] cyclohexylene-2-

dihydroindolinone series recently reported by Ding et al. (2013) for various 

RTKs inhibition including c-KIT [19]. 

Experimental 

Methodology and Computational Details 

3D QSAR was completed using PHASE 3.1 (Schrodinger 2009, LLC, NY, 

USA) [20,21]; as incorporated in the Maestro 9.0 (Schrodinger 2009, LLC, 

NY, USA) installed on a machine of Pentium IV 3.06 GHz, Core 2 Quad 

PC with Windows 7 operating system. Domain of applicability of 

developed QSAR model was determined by open-access online application 

‘AD using Standardization approach’ version 1.0 [22]. 

Dataset 

Twenty-five indolin–2–one derivatives previously reported for its c-KIT 

inhibition profile was taken for QSAR studies (Table 1) [19]. Although in 

the chosen dataset of indolin–2–ones; the number of molecules synthesized 

and studied for its RTKs inhibitions were comparatively less but there is 

some peculiarity observed on these molecules. This set offers a very diverse 

range of biological activity and around 65 percent of the compounds were 

more active than the standard used (sunitinib). The potency of some 

compounds was 30 to 40 folds less than the standard one (sunitinib). This 

was our rationale behind a research investigation to find out the answers to 

the questions that, what would be the structural characteristics responsible 

for its less potency? The answers could be obtained by studying 3D QSAR 

on this series. In-vitro IC50 (inhibition concentrations) of the molecules 

against c-KIT were converted to equivalent pIC50 [−log (IC50)]. Values of 

pIC50 were considered as dependent variables in the development of QSAR 

Model. 

The structures of the compounds along with IC50/pIC50 values are specified 

in Table 1. Out of 25 compounds, 20 were selected randomly as training 

set entries and 5 were selected as test set entries by using the ‘Random 

training set’ option available in the PHASE 3.1 module. Division of the 

compounds in training set and test set is done on the grounds of suggestions 

given by Golbraikh A. et al. (2003). As minimum five compounds must be 

selected for the test set, this selection was done by satisfying three 

conditions, a) all representative points of the test set in the multi-

dimensional descriptor space must be close to those of training set. b) vice-

versa with that of training set, c) The representative points of the training 

set must be distributed within the whole area occupied by the entire dataset. 

Training set was used to generate a QSAR model whilst; test set was used 

for validation of generated model. Selection of both sets was done to secure 

a wide range of biological activity, i.e. least to most active [23]. 
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Table 1: Pharmacophore building dataset 

 

Comp Structure IC50 

(nM) 

Observed pIC50 Predicted 

pIC50  R1                R2 

b1. H NH(CH2)2N(CH2CH3)2 11.7 -1.072d -0.97 

a2. 5-F NH(CH2)2N(CH2CH3)2 2.4 -0.38d -0.49 

b3. 5-Cl NH(CH2)2N(CH2CH3)2 2.7 -0.431d -0.59 

b4. 5-Br NH(CH2)2N(CH2CH3)2 2.3 -0.362d -0.43 

b5. 5-CH3 NH(CH2)2N(CH2CH3)2 4.1 -0.613d -0.60 

a6. 5-OCH3 NH(CH2)2N(CH2CH3)2 35.5 -1.55c -1.52 

b7. 5-NO2 NH(CH2)2N(CH2CH3)2 6.9 -0.839d -0.88 

b8. 5-COOCH3 NH(CH2)2N(CH2CH3)2 255.7 -2.408c -2.41 

b9. 5-SO2N(CH2CH3)2 NH(CH2)2N(CH2CH3)2 397.6 -2.599c -2.55 

b10. 4-F NH(CH2)2N(CH2CH3)2 43.1 -1.634c -1.69 

a11. 7-F NH(CH2)2N(CH2CH3)2 180.8 -2.257c -2.16 

b12. 5-F NH(CH2)2-morpholin-4-yl 2 -0.301d -0.42 

b13. 5-F NH(CH2)2-piperidin-1-yl 5.8 -0.763d -0.78 

b14. 5-F NH(CH2)2-pyrrolidin-1-yl 7.4 -0.869d -0.78 

b15. 5-F NH(CH2)2N(CH3)2 6.6 -0.82d -0.92 

b16. 5-F NH(CH2)2OH 1.4 -0.146d -0.19 

b17. 5-F NH(CH2)2-pyridin-2-yl 37.7 -1.576c -1.67 

b18. 5-F NH(CH2)3N(CH2CH3)2 9.9 -0.996d -1.02 

a19. 5-F NH(CH2)3-morpholin-4-yl 5.7 -0.756d -0.77 

b20. 5-F NH(CH2)3-pyrrolidin-1-yl 10.7 -1.029d -1.01 

b21. 5-F NHCH2CH(OH)CH2N(CH2CH3)2 4.1 -0.613d -0.60 

b22. 5-F Morpholin-4-yl 2.1 -0.322d -0.37 

a23. 5-F 

 

7.8 -0.892d -0.85 

b24. 5-F 

 

8.5 -0.929d -0.89 

b25.   Sunitinib  _                               _ 8.9 -0.949d -0.95 

a= Test set molecules; b= Training set molecules. c= Pharm set: Inactive; d= Pharm set: Active
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Pharmacophore modelling and 3D QSAR development 

Fig. 1 Steps in Pharmacophore modelling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the compounds were sketched on the workspace in Maestro 9.0 and 

incorporated as a separate entry in the project table. For defining a 

‘pharma set’ in PHASE, activity threshold range was selected as; 

compounds are active if pIC50 value is above -1.1073 and inactive if 

below -1.500. This resulted in 19 compounds to be ‘actives’ and 6 

compounds as ‘inactives’. Steps carried out for pharmacophore and 3D 

QSAR development are given in Energy minimization of structures was 

performed on ‘LigPrep’ module version 2.3 (Schrodinger 2009, LLC, 

NY, USA) using optimized potentials for liquid simulations (OPLS)–

2005 force field method. OPLS-2005 method works on the steepest 

descent technique and truncated Newton conjugate gradient protocol. In 

this protocol initially, structures were preprocessed by incorporation of 

hydrogen and then stereoisomers were generated. The ionization state of 

the molecules (if any) was identified at pH 7.0. Most of the indolin–2–

ones under study were flexible, but all possible conformations were 

allowed to being generated in order to fetch the active confirmation that 

would be similar to the structure actually binding to the c-KIT. Three-

dimension spatial representations of the structures were necessary for the 

development of a true pharmacophore model [24]. We have chosen 

atom-based 3D QSAR rather pharmacophore-based 3D QSAR because 

atom-based 3D QSAR covers the entire structural space around; where 

as other model only considers the requisite pharmacophoric group points 

[25]. In PHASE 3.1, the pharmacophoric properties such as hydrogen-

bond donor (D), hydrogen-bond acceptor (A), aromatic ring (R), 

hydrophobic moiety (H), negatively ionized group (N), and positively 

ionized group (P) are taken into consideration. Pharmacophore 

hypotheses were created by ‘tree-based partitioning’ method after 

selection of 1 A° as terminal box size. All pharmacophore that are 

mapped into the same box are assumed to be similar enough to ease to 

identify the common pharmacophore. The 1 A° sized grid box 

represented a common pharmacophore in that, each of the least required 

number of active-set molecules were covered. Only boxes survived by 

the partitioning procedure were kept and others were eliminated. 

Common Pharmacophore Hypotheses (CPHs) indicating at least five 

sites (common to all 25 molecules) were considered for the further 

development. 630 hypotheses were identified. All pharmacophore which 

were common were scrutinized, and a ‘scoring protocol’ was applied to 

select the pharmacophore from every surviving grid box. The scoring 

function offers a grading to the different hypotheses. This allows one to 

select the reasonable choices towards most fitting hypotheses. Vector 

and site alignment scores were computed first and used to filter the 

hypotheses. For filtration, default parameters in PHASE panel were set. 

‘Survival inactives’ score was also calculated after obtaining a ‘survival 

score’ for actives. Further for refinement of hypotheses and minimizing 

the chance of penalty for matching inactives; rescoring of hypotheses 

was done. As a result of this, we got post-hoc score. Post-hoc score is 

nothing but the survival score calculated by a sum of the site, volume, 

vector, and selectivity scores. Total one hundred fifty-four hypotheses 

were survived. Hypotheses having post-hoc score more than four (4.0) 

were further selected for QSAR model generation. 

 

Rationale behind selection of top six hypotheses for QSAR model 

building and ‘Atom-based 3D QSAR’ method is provided in 

supplementary material of this article. Before building the QSAR model 

some parameters were set like; grid spacing size was kept to 1.00 A°; 

partial least squares (PLS) factor was kept 4. PLS factor was decided on 

the ground of rule of N/5, where N is the no. of molecules taken in 

training set [23]. Single best hypothesis was chosen based on the 

validation parameters (internal and external validation of model) and 

statistical results obtained. Approved model was utilized for further 

pharmacophore supported virtual screening. 

Validation of 3D QSAR Model 

Validation parameters were analyzed for the hypotheses ADDRR.2, 

ADDRR.4, ADHRR.21, ADHRR.23, ADDHR.49, and ADDHR.14, out 

of that, ADHRR.21 came up with the best results (Table 2). Internal 

validation is performed by leave-n-out predictions on the training set by 

using PLS factor four. This internal cross-validation parameter (R2) can’t 

provide a reliable and correct forecasting for the ability of QSAR models 

to give good results on the molecules other than training set. Hence 

external validation becomes necessary. It is done by few other methods. 

Q2 (test set) (q2 for the predicted activities) and Pearson, R (the 

correlation between the predicted and actual activity for test set) were 

obtained. Another strict requirement for a model acceptance i.e. R

2

0 , R’2

0 & k, k’ were also calculated. R

2

0  (Predicted versus observed 

activities) and R’

2

0  (observed versus predicted activities) are the 

coefficients of correlation that obtains by regression lines through the 

origin with the intercept set to 0. Generally, for a model with good 

predictive ability R

2

0  or R’

2

0  must be equals to or less than R2. For slope 

values k (predicted versus observed activities) or k’ (observed versus 

predicted activities) suitable range is 0.85 ≤ k ≤1.15 or 0.85 ≤k’≤ 1.15 

[26, 27]. 

 

Clin Oncol Res   doi:10.10xx/j.COR.2018.10.004     Volume 1(1): 4-7 



In-Silico 3D QSAR And Pharmacophore Mapping of C-Kit Inhibitors Towards Anticancer Drug Development             5 

 

Table 2: Statistics for the Pharmacophore ADHRR.21 

 

PL

S  

(#) 

sd R2 F p RMS

E 

Q2 Pearso

n-R 1 0.396 0.651

4 

33.6 3.702

e-005 

0.257

3 

0.457

7 

0.7645 

2 0.240

8 

0.836

5 

51.3 1.682

e-008 

0.249

6 

0.615

6 

0.7864 

3 0.141

8 

0.840

3 

79.7 2.025

e-011 

0.183

7 

0.732

1 

0.9004 

4 0.109 0.867

4 

107.

4 

4.094

e-012 

0.172

9 

0.743

2 

0.9116 

sd: standard deviation of the regression; R2: regression coefficient; F: 

variance; p: level of significance variance; 

RMSE: root mean square error; Q2: value of q2 for the predicted 

activities; 

Pearson R: correlation between the predicted and observed activity for 

the test set 

 

Other than above parameters, the robustness of developed model was 

also checked by Y-randomization (randomization of response) test. This 

methodology helps to determine the robustness of a selected model and 

the significance of statistical results obtained. It requires a random 

scrambling of dependant variable (Y) of the training set molecules to 

produce new training sets those are dissimilar to the original. The newly 

produced models, after random shuffling are expected to have less 

significant correlation coefficient (R2
Y-randomization) values comparative to 

R2 of the original model and if the reverse is happening then the selected 

QSAR model cannot be obtained for a specific modeling method and 

dataset [28]. Scatter graph of observed activity versus predicted activity 

of the test set molecules was also drawn and analysed. 

Results and Discussion 

Development and validation of 3D QSAR model 

To produce a true 3D QSAR model, that can be further utilized for the 

ligand-based virtual screening; we have mapped a pharmacophore, based 

on the previously reported indolin–2–one derivatives as c-KIT 

inhibitors. After completion of rigorous steps involved in the quest of 

finding out good common pharmacophore hypothesis (CPH); only six 

hypotheses i.e. ADDRR.2, ADDRR.4, ADHRR.21, ADHRR.23, 

ADDHR.49, and ADDHR.14 were considered for building the 3D 

QSAR model. These six hypotheses were selected by top survival score 

(≥ 3.8) and post hoc (≥ 4.0). At the PLS factor 4, 3D QSAR models were 

generated for the above six CPHs. We have analyzed the statistical 

results of these hypotheses. Among which ADHRR.21 was found to be 

the best one. ADHRR.21 was granted on the ground of statistical 

parameters obtained for the internal validation against training set and 

external validation through test set molecules. 

 

Regression coefficient R2 (0.8674) was high for this model, but as per 

the suggestion given by A. Golbraikh et al. (2003) [28] this parameter is 

not only sufficient to explain the robustness of 3D QSAR model. Further 

other parameters are taken into consideration. Q2 (obtained by leave 

one/N out method) was also high (0.7432). Q2 is a cross-validated 

correlation coefficient. More over Q2 parameter is more reliable than the 

regression coefficient because it is calculated by external validation 

method on the test set molecules. Standard deviation (sd) of the 

regression was low (0.109), residual mean square error (RMSE) was in 

limit (0.1729), Pearson R: correlation coefficient of the test set between 

the observed and predicted activity, was obtained to be high (0.9116). 

All statistical results for best model are given in Table 2. Predicted 

activity of all dataset molecules by ADHRR.21 hypothesis is provided 

in Table 1. At PLS factor 4, other statistical measurements i.e. R

2

0  and 

R’

2

0 were obtained as 0.8574 and 0.8763 respectively; while k and k’ 

were obtained as 0.96 and 0.94 respectively. All these parameters were 

in acceptable range so our model ADHRR.21 has been proved to possess 

high predictive accuracy for further screening protocol. More over very 

less residual difference in the observed and predicted activities indicates 

that we have selected the best 3D QSAR model. ADHRR.21 model 

along with angles and distances between the sites is given in Fig. 2A & 

2B. 

 

Fig. 2A Angles between the essential Pharmacophoric groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2B. Distances between the essential Pharmacophoric groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Upon QSAR visualization for the active molecules (Fig.3A), it was 

clearly observed that D3 (H–bond donor feature) is due to the –NH of 2-

oxoindoline moiety, A1 (H–bond acceptor feature) is coming from C=O 

of 2-oxoindoline moiety. H9 (Hydrophobic group) was aligned on the 

free –CH3 of 2-methyl-4, 5, 6, 7-tetrahydro-1H-indole moiety. Two 

aromatic rings R11 & R12 were visualized on the benzene ring of 2-

oxoindoline and Pyrrole of 2-methyl-4, 5, 6, 7-tetrahydro-1H-indole 

respectively. Collective effects of (A), (D), (H), (R) and other features 

were visualized by a QSAR visualization panel of PHASE. 

 

In Fig. 3A, blue cubes indicate favorable features causative to the ligand 

(actives) interactions with the target while in the Fig. 3B, red cubes 

indicate unfavorable features from inactives for c-KIT. To our 

Clin Oncol Res   doi: 10.10xx/j.COR.2018.10.004     Volume 1(1): 5-7 



In-Silico 3D QSAR And Pharmacophore Mapping of C-Kit Inhibitors Towards Anticancer Drug Development             6 

 

observation, few substitutions like 5-carboxylate, 5-(N, N-

diethylsulfamoyl) at the 5th position of 2-oxoindoline moiety and 5-

methoxy substitution at the 4th or 7th position of 2-oxoindoline moiety 

were responsible for unfavorable interactions of those molecules with 

the active site of c-KIT receptor. Here it could be emphasized that fitness 

score is a crucial parameter to study the demarcation lines between the 

active and inactive molecules, because fitness score is an indicative 

measure of a mapping of pharmacophore site points towards the ligands. 

 

Fig. 3A Actives from the dataset; Blue cubes showing favorable 

regions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3B Inactives from the dataset; Red cubes showing unfavorable 

regions. 

 

 

 

It also measures how well vector characteristics [(A), (H), (N), (D), (P), 

and (R)] overlays on the hypothesis and how well the conformations 

superimpose in an overall sense. The regression line equation (observed 

versus predicted activity) of the combined training & test set molecules 

was obtained as y = 0.94x + -0.02 (R2 = 0.94) through the scatter graph 

(Fig. 4). 

 

 

 

 

 

 

 

Fig. 4. Scatter plot of Training and Test set molecules 

 

The Y-randomization test was carried out by shuffling of observed 

biological activity (pIC50) at 100 random trials for same number of 

training set molecules every time and same group features. The values 

of correlation coefficient (R2
Y-randomization) obtained were in the range of 

0.08 to 0.4329 and was found to be less than the original correlation 

coefficient (R2=0.8764) of ADHRR.21. This proves that our model 

ADHRR.21 was not obtained by mere chance. 

 

Conclusion 

 

Pharmacophore identification and 3D QSAR model development was 

carried out using series of previously reported indolin–2–ones with well-

defined c-KIT inhibitory activity. The common pharmacophore 

hypothesis (ADHRR.21) was generated comprising five features; two 

aromatic rings (R) mainly from indolin–2–one and pyrrole, one 

hydrophobic (H) group (-CH3), one acceptor (A) groups (–C=O) and one 

donor (D) from –NH of indoline–2–one. The developed 3D QSAR 

model was able to provide information regarding favorable and 

unfavorable structural features responsible for c-KIT activity and was 

found to be statistically significant (R2=0.8764, Q2 =0.7432). Other 

recommended parameters like R
2

0
, R’

2

0  
and k, k’ were also measured 

and found to be within an acceptable range. The model was further 

validated by external validation methods; Y-randomization. 
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