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A B S T R A C T 

 

Introduction 

 

Renal cell carcinoma (RCC) is composed of a heterogeneous group of 

tumors originating from different parts of the nephron, maintaining 

distinct genetic and histological characteristics, which is more prevalent 

in men (5%) than in women (3%) worldwide [1]. The most commonly 

occurring RCC types are clear cell (ccRCC), papillary (pRCC), and 

chromophobe RCC (chRCC) [2]. The clear cell type represents 70–80% 

of RCC, and the 5-year overall survival rate is about 55-60%, whereas 

the non-ccRCC types, pRCC and chRCC, constitute about 15% and 10% 

of RCC, respectively with 5-year survival rates around 70–95% [3]. The 

non-ccRCC types show the aberrations of discrete genes and signaling 

pathways and display a hypovascular feature [4, 5]. Hence, non-ccRCC 

tumors differ in tumor progression and tumor behavior compared with 

ccRCC. The most common genetic aberrations encountered in ccRCCs 

are loss chromosome 3p25, leading to the inactivation of the von Hippel–

Lindau (VHL) gene [6]. In sporadic ccRCC, loss of heterozygosity 

(LOH), mutation and deletion, or hypermethylation of the VHL gene 

demonstrate gene inactivation in 56%-91% of the cases [7-11]. In 

sporadic ccRCC, lack of pVHL activated the transcription factor 

hypoxia-inducible factor-alpha (HIF-) subunits and further modifies 

several growth factors, like epidermal growth factor (EGF), insulin-like 

growth factor (IGF), platelet-derived growth factor (PDGF), and 

vascular endothelial growth factor (VEGF) [12]. In ccRCC, VHL not 

only regulates the cellular oxygen sensing mechanism but is also 

involved in Wnt/β-catenin mediated signaling pathways [13, 14].  

 

The Wnt signaling pathway is classified into the canonical or β-catenin-

dependent or Wnt/β-catenin and non-canonical or β-catenin-independent 

pathway. The non-canonical pathway, which is not discussed further in 

this review, is linked with cytoskeleton remodeling and cell movement. 

The canonical signaling pathway is crucial for normal embryonic 

development and cell activities, such as cell proliferation and stem cell 
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renewal. Also, dysregulation of the pathway causes carcinogenesis and 

metastatic behavior [15, 16]. The canonical pathway propagates its 

functions through the overexpression of β-catenin. Several factors, at 

different layers of the Wnt signaling pathway, can cause the upregulation 

of β-catenin such as mutations in the β-catenin gene, and mutations in 

axin and adenomatous polyposis coli (APC), dysregulation of the β-

catenin destruction complex, overexpression of Wnt ligands, 

downregulation of Wnt antagonists and loss of inhibition or decreased 

activity of regulatory pathways [15-17].  

 

This review summarizes the canonical Wnt/β-catenin signaling pathway 

and its role in the oncogenesis of ccRCC in the presence or absence of 

VHL gene function. 

 

The Canonical Wnt Signaling Pathway (Wnt/ β-catenin)  

 

Generally, the canonical pathway is constituted of the following factors: 

the ligand/receptor cell membrane complex, the cytosolic β-catenin 

destruction complex, and the nuclear β-catenin- T-cell factor/lymphoid 

enhancer-binding factor (TCF/LEF) transcription complex [18, 19].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1: Schematic diagram of the Wnt/b-catenin signaling pathway in general and ccRCC.  

A) Wnt-OFF. When Fzd/LRP receptors are not engaged, the destruction complex [in the dotted circle: CK-1, GSK-3β, APC, and Axin-1] phosphorylates 

β-catenin at various residues and destabilizes β-catenin. Consequently, β-catenin undergoes proteasomal degradation.  

B) Wnt-ON. Binding of Wnt ligands trigger membrane receptors Fzd /LRP and deactivate the destruction complex; as a result, stabilized β-catenin 

accumulate in the cytoplasm and then translocated into the nucleus to enhance the transcription of the Wnt target genes with co-factor TCF/LEF. 

C) Wnt-in ccRCC. In ccRCC, secreted Wnt ligands bind to Wnt membrane receptors, or loss of function/ deletion/ promotor hypermethylation of Wnt 

antagonists or elevated expression of Fzds disrupt the destruction complex (in the dotted circle). Subsequently, non-phosphorylated β-catenin translocate 

into the nucleus, and in association with TCF/LEF stimulate Wnt/ β-catenin pathway and further activate Wnt target genes like cMYC, cyclin D1; Loss of 

pVHL in ccRCC activates Wnt/ β-catenin pathway not only by stabilizing HIF-1α but also by destabilizing JADE1. 

 

In normal conditions,  in the absence of Wnt ligand, the Wnt proteins 

form the “destruction complex” that includes the tumor suppressors 

APC, glycogen synthase kinase 3β (GSK-3β), casein kinase 1 (CK1), 

protein phosphatase 2A, and ubiquitin-labeled and the E3-ubiquitin 

ligase Beta-transducin repeats-containing proteins (β-TrCP). The 

destruction complex, by series of phosphorylation events, maintains a 

low level of β-catenin in the cytoplasm and as a result, the Ubiquitin-

Proteasome System (UPS) degrades phosphorylated β-catenin (Figure 

1A) [17, 20-24]. 

 

Induction of the canonical Wnt signaling pathway occurs when a 

secreted Wnt ligand binds to the heterodimeric receptor complex of a 

frizzled (Fzds) and single transmembrane lipoprotein receptor-related 

protein (LPR5/6) and deactivates the destruction complex. Then, non-

phosphorylated-active β-catenin accumulates in the cytoplasm and later 

translocates into the nucleus where it binds to the lymphoid enhancer 

factor/T-cell factor (LEF/TCF) and activates Wnt target genes (Figure 

1B) [25-27]. 

 

Wnt/-catenin pathway and ccRCC 

 

The canonical Wnt signaling pathway is also connected with the 

pathogenesis of a wide variety of cancers as well as ccRCC. In diverse 

cancer types, alteration in the expression of different Wnt ligands, Wnt 

receptors (Fzds), and Wnt antagonists stimulate the Wnt/β-catenin 

pathway (Figure 1C) [28].  

 

Role of Wnt ligands in ccRCC 

 

The Wnt ligands have the leading role in the activation of the Wnt 

signaling cascade is more important than mutations of various genes and 

components related to the pathway. Tumor cells and a mixture of cells 

with the tumor microenvironment contributes with the secretion of Wnt 

ligands to induce the canonical pathway, but the autocrine supply of 

ligands strongly stimulate the Wnt pathway in several cancers, including 

ccRCC [29]. Stimulation of the canonical pathway by Wnt ligands and 

accumulation of β-catenin  in the cytoplasm are restricted to ccRCC [30]. 
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In the Wnt ligand family, Wnt1 and Wnt10 are associated with the 

canonical pathway, whereas Wnt5a and Wnt7 are linked to the non-

canonical pathway [31, 32]. Accordingly, the level of Wnt ligands 

expression and downstream signaling mechanisms differ in various 

tumors. In ccRCC, high expression of Wnt1 correlates with larger tumor 

size, advanced stage, and risk of vascular tumor infiltration, but not with 

overall survival (OS) and cancer-specific survival (CSS) [33]. 

Augmentation of the Wnt1 is associated with ccRCC progression and 

enhanced expression of Wnt10A portrays an independent risk factor for 

carcinogenesis of ccRCC [34]. The majority of ccRCCs show 

hypermethylated silencing of the Wnt7A gene, which has a positive 

association with tumor grade and stage [35]. Reduced expression of 

Wnt5A mRNA was reported in the development of kidney tumors [36]. 

In humans, the interaction between the Wnt ligands and Fzd receptors is 

conserved, and cancer type specific. Some Wnt ligands exhibited as a 

tumor suppressor and some as an oncogene.  

 

Role of Wnt Antagonist in ccRCC 

 

Generally, the Wnt antagonist genes serve as a tumor suppressor and 

inhibit the Wnt signaling pathway [37]. There are two functional classes 

of Wnt-antagonists: The class 1, secreted Fzd‑related protein (Sfrp) 

family and Wnt‑inhibitory factor‑1 (Wif‑1), antagonizes Wnt ligands, 

whereas class 2, Dickkopf (Dkk) family, interferes with co-receptors 

lipoprotein receptor-related proteins (Lrp5/6) and Kremen (Krm). In 

ccRCC, loss of function of the Wnt antagonists, Wif-1, sFRP, Dkk, 

IGFBP-4, and SOSTDC1, leads to activation of the Wnt singling 

pathway [38-41]. Sporadic ccRCC frequently expresses low Wif-1 

levels, while the restoration of Wif-1 reduces the tumor growth [42]. 

Several Wnt antagonists were found to be highly methylated (sFRP-1, 

sFRP-2, sFRP-4, sFRP-5, Wif-1, and Dkk-3); for example, methylated 

sFRP-1 has recently emerged as an independent predictor of ccRCC, and 

sFRP-2 and sFRP-4 noted a trend towards significance as independent 

predictors had been observed [43-45]. 

 

In the serum DNA of ccRCC patients, the methylation status of all Wnt 

antagonist genes is significantly associated with advanced tumor grade 

and stage [43]. A small set of primary ccRCC showed methylation-

associated silencing of SFRP1, but in contrast, metastatic ccRCC 

overexpressed SFRP1 [46, 47]. Tissue samples from ccRCC patients 

showed significantly lower Wnt antagonist mRNA and protein levels 

(WIF1, sFRP1, Dkk1, and Dkk3) [42, 48, 49]. Both tissues and serum 

samples of ccRCC displayed decreased expression of Dkk1 and Dkk3, 

while the Dkk1 levels significantly correlated with clinicopathological 

parameters [49].  

 

In contrast, the expression of DKK4 that negatively regulates Wnt 

singling in ccRCC, was significantly higher in ccRCC, but did not affect 

the biological behavior of ccRCC [50]. Another IGFBP-4, an antagonist 

of the canonical pathway, was markedly higher in metastatic ccRCC than 

the non-metastatic ccRCC and kidney cortex [51]. Furthermore, in 

invivo study on ccRCC cells, IGFBP-4 expression induces cell growth, 

metastasis, Wnt/beta-catenin signaling [51]. The Wnt antagonists induce 

the Wnt pathway through diverse mechanisms and, in some conditions, 

inhibit the action of other antagonists. Both serum and tissues of the 

ccRCC reported an identical pattern of methylation of the Wnt antagonist 

genes, which implied that Wnt antagonist genes could be a reliable and 

feasible biomarker for ccRCC staging and prognosis. 

 

Role of Wnt Receptors in ccRCC 

 

The Wnt receptor complex is composed of two components: a member 

of the frizzled (Fzd) family and low-density-lipoprotein-receptor related 

proteins (LRP-5 and LRP-6). The Wnt receptor complex mediates the 

activation of the canonical pathway; however, it is not clear that the non-

canonical pathway requires LRP5/LRP6 in the receptor complex for 

activation.  

 

In humans, ten Fzds (Fzd1-10), 7-transmembrane receptors, are 

identified, which are nexus with LRP5/6/ ROR2/RYK [22, 52]. 

Retrospective studies reported that the elevated levels of some Fzd 

receptors linked with patient’s survival in multiple cancers [53]. The 

ccRCCs exhibit frequent alterations of the Fzd receptors, and 

knockdown of Fzds in ccRCC cells diminish the cell growth, invasion, 

motility, metastasis, and chemoresistance by inhibiting the Wnt pathway 

[53-55]. Less than 1% of ccRCC patients carry Fzd1 mutation [56]. 

Sunitinib-resistant ccRCC cell lines and ccRCC patient samples express 

high levels of Fzd1 mRNA, and the high expression Fzd1 mRNA levels 

in ccRCC correlate with tumor stage, recurrence, and favorable OS and 

DFS [56]. The expression of receptor Fzd5 and Fzd8 are significantly 

higher in ccRCC compared with the kidney cortex, and 30% of the 

ccRCCs register an association between Fzd5 and nuclear expression of 

cyclin D1 [54, 57]. Even though ccRCC demonstrate significantly 

elevated Fzd7 levels than the surrounding kidney tissues, there was no 

correlation observed with clinicopathological parameters [58].  

 

Tumors unveil a notably higher expression of mRNA and protein levels 

of the Fzd8 receptor than peritumor tissues. As a result, increased FZD8 

receptor, by stimulating both the canonical and non-canonical Wnt/β-

catenin pathways, facilitates the proliferation, epithelial to mesenchymal 

transition (EMT), and metastasis of ccRCC [59]. The Fzd10 interacts 

with Hypoxia-inducible protein 2 (HIG2) and induce Wnt signaling 

target genes [60]. The involvement of Fzd receptors with co-receptors, 

LRP5/6, RYK, and ROR2, also possess a vital function in Wnt signaling, 

which have indicated the potential targets for cancer treatment.  

 

Role of Wnt in ccRCC 

 

Multiple factors, other than Wnt associated, can modulate the canonical 

Wnt signaling pathway and contribute to the ontogenesis of ccRCC. The 

canonical pathway in ccRCC is regulated at the level of β-catenin and 

co-transcription factors levels. Either inactivation of APC or activation 

of β-catenin by mutations can induce the Wnt pathway [30]. Isoforms of 

TCF-4 (T-cell factor-4), a co-transcriptional factor of β-catenin, 

regulates the progression of ccRCC through inhibition of apoptosis [61]. 

Receptor tyrosine kinase-like orphan receptor 2 (Ror2) stabilizes β-

catenin in response to Wnt3a exogenous signals leading to an activation 

of the Wnt/β-catenin cascade [62]. Aberrant expression of β-catenin has 

increased cell proliferation, migration, and invasion, while repression of 

β-catenin inhibits PCNA (Proliferating cell nuclear antigen) and Ki67 

expression, and delays tumor progression by in the rat [63]. 
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Different long non-coding RNAs (lncRNAs) can also modulate the Wnt 

pathway at transcriptional to post-translational levels [64]. In a ccRCC 

cell line, the colon cancer-associated transcript 2 (CCAT2) promoted the 

ccRCC tumorigenesis [65] whereas LINC01510 negatively governed the 

canonical pathway and suppressed cell proliferation, invasion, EMT and 

promoted the apoptosis of ccRCC [66]. 

 

Furthermore, other factors can also dictate the canonical pathway at 

different layers. Wnt/β-catenin pathway inhibitors like ethacrynic acid 

(EA), ciclopirox olamine (CIC), and piroctone olamine (PO) suppressed 

the progression of ccRCC [67, 68]. Interestingly, an anthelmintic drug 

Pyrvinium (CK1α-dependent manner), suppressed the progression of 

ccRCC by induction of apoptosis [69]. A glycolytic enzyme ALDOA 

(fructose-bisphosphate aldolase A) promoted proliferation, migration, 

and invasion of ccRCC cells [68]. In addition, ubiquitin ligases can 

decrease cell invasion and ccRCC progression by stabilizing β-catenin 

[70, 71]. 

 

The activity of β-catenin not only establishes a bridge between Wnt and 

cadherin pathways but also collaborates in the regulation of EMT, gene 

expression, and cell adhesion in cancer. E-cadherin, an EMT marker, can 

constrain the translocation of β-catenin from the membrane to the 

cytoplasm [72]. In ccRCC patients, the E-cadherin/β-catenin status was 

found to be an independent survival factor [72].  Methylation induced 

gene silencing of SOX7 (SRY-related high mobility group box 7) 

inhibited the cell growth and cell proliferation of ccRCC cells by 

modulating the Wnt cascade [73].  

 

Various studies reported that miscellaneous factors also regulate the 

canonical pathway in ccRCC. High expression of leucine-rich protein 

(NLR) family NLRC5, a novel member of the nucleotide-binding 

domain, induced the Wnt/β-catenin axis in ccRCC by positively 

regulating β-catenin [74]. Diminished expression of the CXXC4 gene 

induced the Wnt signaling pathway and correlated with a more 

aggressive ccRCC phenotype [75]. A nucleolar protein MSP58 

positively regulated the proliferation and invasion of ccRCC through the 

Wnt/β-catenin axis [76]. Kindlin‑2, known as an integrin-interacting and 

FERM-domain containing protein, involved in the ccRCC progression 

through the Wnt pathway [77]. RNA binding protein QK1, through Wnt 

and GPCR pathway, inhibits the ccRCC proliferation by attuned cell 

contact inhibition [78]. 

 

Impact of VHL and Hypoxia on Wnt/-catenin Pathway in 

ccRCC 

 

Sporadic ccRCC is strongly associated with the VHL-HIF signature 

pathway, due to loss of function of pVHL and stabilization of the oxygen 

sensor HIF-α. In ccRCC, the canonical Wnt pathway forms a complex 

network with the VHL-HIF signaling pathway [79]. In normal 

conditions, pVHL serves as an E3-ligase adaptor protein and targets 

HIF-a subunits for degradation by ubiquitination [80, 81]. In ccRCC, 

double deletion of the VHL gene stabilizes the HIF-α subunits, which in 

turn promotes cell proliferation, metastasis, EMT, and angiogenesis 

[82]. Inactivation of VHL, along with other tumor suppressor genes, can 

cause ccRCC oncogenesis and also regulated the canonical Wnt 

signaling pathway [79, 83]. 

 

In ccRCC, the short arm of chromosome 3 is frequently affected by 

somatic alterations in regions where both the VHL and the β-catenin 

coding genes are located [84, 85]. Mutation of the β-catenin coding gene 

is uncommon in ccRCC, but alternate mechanisms might cause 

activation of β-catenin through the HIF-dependent or HIF-independent 

pathways or via growth factors [30, 86, 87]. Aberrant expression of VHL 

enabled the oncogenic β-catenin pathway through the mediation of 

hepatocyte growth factor- β (HGF-β) [14]. In addition, VHL deficient 

ccRCC cells prompted β-catenin–driven transcription of AURKA, 

which was associated with the deformation of primary cilia and induced 

renal oncogenesis [88]. In sporadic ccRCC, the expression of VHL and 

JADE-1 was lower; however, in normal conditions, pVHL stabilized 

JADE-1 that negatively regulated Wnt/β-catenin and promoted 

apoptosis and renal tumor suppression [89, 90]. 

 

Consolidated activation of HIF-α-β-catenin signal induces the canonical 

Wnt/β-catenin pathway in the absence of VHL [91]. The role of HIF-1α 

confined to specific tumor types while regulating the Wnt-β-catenin 

pathway [92]. In hypoxic ccRCC, HIF-2α directly bound to β-catenin 

and enhanced the transcriptional activity of β-catenin/TCF by recruiting 

the transcriptional co-activator p300, and contributed to tumor growth, 

angiogenesis, metastasis, and dedifferentiation of tumor cells [93].  

 

These updated reports on the Wnt/ β-catenin pathway and its 

collaboration with the VHL-HIF-α pathway dictate fundamental cellular 

functions mediated by complex responses. These pathways are essential 

for genomic instability, hypoxia response, DNA repair, epigenetic 

modification, splicing, and other cellular processes. Knowledge of 

aberrant signaling of these pathways contributes to the additional 

roadmap for the ccRCC carcinogenesis, which can lead to novel 

therapies in the future. 

 

Summary 

 

In normal physiological conditions, different signaling pathways 

contribute to the development and cellular homeostasis. In cancer, the 

critical components of the signaling pathways are often distorted, 

leading to dysregulation. In ccRCC, the role of the Wnt/ β-catenin 

pathway in the formation and progression of ccRCC is still elusive. In 

previous decades, targeting kinase receptors and key signaling 

components provided improved survival rates. Besides, the simultaneous 

effect of recent immunotherapies along with tyrosine kinase inhibitors 

provide a better response. For effective treatments, it is essential to gain 

in-depth knowledge of the multiple components of the signaling 

pathways and their interaction and role in the pathogenesis of ccRCC. 
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