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A B S T R A C T 

 

Background 

 

Over the past decade, we have been developing tactile-based 

neurosensory assessment tasks to utilize in evaluating CNS 

deficits across a wide spectrum of neurological disorders. The 

somatosensory-based tests have demonstrated sensitivity to alterations 

in neurological function in autism, Tourette’s, OCD, ADHD, 

Parkinson’s, chronic pain, concussion, aging, alcohol consumption 

history, early stage diabetes, and amputation [1-22]. Additionally, 

healthy individuals demonstrated sensitivity to pharmacological 

manipulation: low dose of DXM, conditioning with TMS and different 

conditions of adaptation [23-28]. In all of these studies, the primary 

observations were made by evaluating subject performance on multiple 

types of two-forced-choice alternative modified von Bekesy tracking 

protocol (first described in Tannan et al., 2005) [29]. In each of these 

protocols, the individual was queried to select the locus of one of two 

stimuli (e.g., which of the two stimuli was larger, which of the 

two stimuli was presented first, or which of the two stimuli 

was perceived to be longer in duration) and a tracking protocol adjusted 

the difference between the two stimuli presented on the subsequent trial 

based on subject’s response (see Puts for comprehensive description of a 

full battery of tasks) [30]. The only value reported in the aforementioned 

reports was the difference limen obtained from the tracking protocols. 

An additional measure that is routinely collected with these two-forced-

choice protocols, but has yet to be reported, is the time after a stimulus 

elapses before an individual respond with the answer (i.e., the “response 

time”). Response time, as it is defined in this report, is significantly 

different from the commonly used reaction time, a measure obtained 

by instructing an individual to respond as quickly as possible after they 

detect a stimulus. Rather, the response time is a measure that has been 

utilized in evaluating speed-accuracy trade-offs (SAT; see review by 

Heitz) in a wide range of discrimination tasks [31]. However, there have 
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Background: A number of reports have demonstrated significant differences in human performance on 

diverse somatosensory-based discriminatory tasks dependent on the individual’s neurological status.  For 

example, compromised neurological status has been shown to lead to poor performance on tactile-based 

tasks such as vibrotactile stimulus amplitude discrimination, frequency discrimination, temporal order 

judgement, timing perception, and reaction time, and these deficits have been observed across a diverse 

spectrum of neurological disorders.  

Results: In this report, response time of recently concussed individuals (1-3 days) was found to be 

significantly longer (~25%) than that of non-concussed individuals (i.e., controls) and individuals 

recovering from concussion (10+ days post-concussion). Additionally, a significant difference was found in 

response time on two different tasks. Timing perception, which is hypothesized to engage significantly more 

neural circuitry than amplitude discrimination, had a significantly longer average response time than 

amplitude discrimination.  

Conclusions: These findings strongly suggest that response time could be used as a discriminative measure 

when evaluating overall neurological health and/or cognitive function, and this is consistent with findings 

of other reports that examined speed-accuracy trade-offs on discrimination tasks. 
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been no evaluations of the SAT in tactile-based discrimination tasks. Our 

primary objective in evaluating the response time was to determine 

if additional information about a subject’s neurological condition could 

be obtained from discrimination tasks that are routinely administered in 

a wide range of studies. 

 

There were two working hypotheses that guided this investigation. The 

first was that individuals with some type of neurological insult would 

have slower than normal response times, and the second was that timing 

perception – a task that theoretically would be more demanding than 

amplitude discrimination – would have a longer response time than 

amplitude discrimination. In this study, we investigated the response 

times of individuals with concussion and compared them with healthy 

controls. Although individuals were never instructed to respond quickly 

– only accurately – there appears to be a significant difference between 

the response time of healthy controls, concussed individuals, and 

individuals recovering from concussion. Additionally, the response time 

on tasks that are cognitively more demanding is longer for both healthy 

controls and concussed individuals. To date, there have been no reports 

of response time on tactile-based neurosensory assessments. 

 

Methods 

 

Data were collected from 102 healthy subjects (58 males, 44 females, 

mean age 19.6 years, SD 0.75 years) and 121 subjects (90 males, 

31female, mean age 20.4, SD 1.49 years) who had sports-related 

concussions. All athletes were diagnosed with mild traumatic brain 

injury (mTBI) in the form of a concussion by a certified athletic trainer 

and the team physician with the help of the Sport Concussion 

Assessment Tool 2 (SCAT-2) and had no prior history of concussion or 

any other diagnosed medical conditions. A survey about medication and 

medical history was filled out by each subject before experimental tests 

to exclude subjects with a history of neurological impairment. All 

participating subjects were naïve of the study design and issue under 

investigation. The study was performed in accordance with the 

Declaration of Helsinki, all subjects gave their written informed consent, 

and the experimental procedures were reviewed and approved in 

advance by an institutional review board. A Brain Gauge stimulator 

(Figure 1) was used to deliver vibrotactile stimulation to the subjects 

during the experiments. The Brain Gauge vibrotactile stimulator was 

developed in our laboratories for use in experiments such as those 

described in this report. The design was based on the functionally 

equivalent CM4. The CM4 stimulator, described in detail in Holden et 

al., 2012, has been utilized to assess multiple sensory information 

processing characteristics in a diverse spectrum of human subject study 

[15, 20, 26, 28, 32-43]. The prominent feature of these protocols, which 

have demonstrated significant sensitivity to alterations in CNS 

processing, is that they are independent of detection thresholds or skin 

sensitivity. 

 

During the evaluation session, subjects were seated comfortably in a 

chair with their hand on the Brain Gauge. Vibrotactile stimulation was 

delivered via 5 mm diameter probes that come in contact with the 

subject’s digit 2 (D2; index finger) and digit 3 (D3; middle finger) of the 

left hand. The independent probe tips are computer-controlled and 

capable of delivering a wide range of sinusoidal vibrotactile stimulations 

of varying frequencies and amplitudes. The fingertip pads were chosen 

as test sites for two reasons: (1) to allow the convenience of access and 

comfort of the subject; and (2) because of the wealth 

of neurophysiological information that exists for the corresponding 

somatotopic regions of the cortex in primates. The subject used his/her 

right hand to indicate responses on a two-button computer mouse. A 

computer monitor provided visual cueing during each of the 

experimental runs. The cues indicated when the experimental stimuli 

would be delivered and when subjects were to respond. Training trials 

conducted prior to each task familiarized subjects with the test; correct 

responses on three consecutive training trials were required before the 

start of each assessment. The subject was given performance feedback 

during the training trials (the results of which were excluded from the 

collected data) but was not given performance feedback or knowledge 

of the results during data acquisition.  

 

A series of sensory perceptual measures were employed to assess tactile 

information processing ability. Stimulus parameters were specified 

interactively by test algorithms based on specific protocols and the 

responses of the subjects during those protocols. In sum, these tests 

lasted approximately ten minutes and consisted of evaluations of 

amplitude discrimination and duration discrimination. Subjects were 

tested no more than six total times over the course of 1-2 weeks, with the 

exact number of testing sessions varying from subject to subject based 

on a number of factors. Researchers were instructed to test concussed 

subjects within 24 hours of the injury, at 48 hours, 4 days, 7 days and 10 

days, as suitable for both the participant and the researcher's schedule. 

Variation in the testing intervals were due to the severity of the subject's 

injury, scheduling conflicts between the researcher and the participant, 

and/or the subject's decision to discontinue the study due to progress 

made towards recovery. 

 

 

 

 

 

 

 

 

 

Figure 1: Brain Gauge two-point vibrotactile stimulator used in cortical 

metrics studies. Vertical skin displacement sinusoidal stimuli are 

delivered to the tips of the index and middle fingers via two round 5 mm 

diameter probes; the device interfaces to any computer or laptop via 

USB.  

 

I Amplitude Discrimination (AD) 

 

Amplitude discriminative capacity is defined as the minimal difference 

in amplitudes of two sinusoidal vibratory stimuli for which an individual 

can successfully identify the stimulus of larger magnitude. For the 

amplitude discrimination task, the device sequentially delivered 

sinusoidal vibrotactile stimuli (initial stimulus parameters: 400 μm peak-

to-peak amplitude “test” stimulus, 200 μm “standard” stimulus, 25 Hz, 

500 msec, 20 μm step size) to D2 and D3 over 20 trials. Inter-stimulus 

interval between the two stimuli was 500 msec. Discrimination capacity 

was assessed using a 2AFC tracking protocol that has been described and 

implemented in a number of previous studies [3, 23, 33, 37, 41-44]. The 
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loci of the stimuli were randomly varied on a trial-by-trial basis, and 

subjects were questioned as to which of the two digits received the higher 

magnitude stimulus. The amplitude of the test stimulus was adjusted 

after each trial on the basis of the response such that correct responses 

lowered, while incorrect responses increased, the test amplitude on 

subsequent trials.  

 

II Duration Discrimination (DD)  

 

Duration discriminative capacity is defined as the minimal difference in 

durations of two stimuli for which an individual can successfully 

identify the stimulus of longer duration. For the duration discrimination 

task, sequential stimuli were delivered to D2 and D3 in 20 trials (initial 

stimulus parameters: 750 msec “test” stimulus, 500 msec “standard” 

stimulus, 300 μm, 40 Hz, 25 msec step size). Discrimination capacity 

was assessed using a 2AFC tracking protocol, and the location of the 

stimulus of longer duration was randomly selected on a trial-by-trial 

basis. Subjects were asked to indicate which of the two digits received 

the longer stimulus duration and, as previously reported subsequent 

duration of the test stimulus was adjusted on the basis of subject response 

[33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Average response time for amplitude discrimination and 

duration discrimination for control subjects, concussion subjects, and 

recovery subjects.  Note that average response times for concussed 

individuals are significantly higher than those for controls and 

individuals recovering from concussion (error bars are standard error 

of the mean). 

 

Results 

 

The average response times obtained during the amplitude and duration 

discrimination tasks for healthy controls, recently concussed individuals, 

and individuals recovering from concussion are summarized in Figure 2. 

The Concussion group includes data points collected 0 to 3 days after a 

subject was diagnosed with concussion and the Recovery group includes 

data collected at least 10 days after sustaining a concussion. The 

response times collected from the concussion group are significantly 

longer than those collected from the healthy controls or the subjects after 

recovery. The average response time on the amplitude discrimination 

task was 1353 ± 44 msec for the concussion group, approximately 23% 

higher than the average response time for healthy controls (1100 ± 37 

msec) and the recovery group (1079 ± 85 msec). Similarly, the average 

response time on the duration discrimination task was 1520 ± 

49 msec for the concussion group, approximately 32% higher than the 

average response time for healthy controls (1146 ± 34 msec) and the 

recovery group (1156 ± 103 msec). It is worth noting the similarity 

between the average response times for controls and subjects in the 

recovery group not only between groups (21 msec for amplitude 

discrimination; 10 msec for duration discrimination) but also between 

tasks (<80 msec between all average response times for both groups).  In 

contrast, the average response time for subjects in the concussion group 

was 167 msec higher on the duration discrimination task compared to 

the amplitude discrimination task. 

 

Figure 3 shows how the average response time in the duration 

discrimination task changes as subjects diagnosed with a concussion 

recover. It is clear from the graph that within the first 24-72 hours, 

subjects have much higher response times in the duration discrimination 

task, with statistically elevated response times remaining until 10 days 

after injury (Single Factor ANOVA analysis shows a significant 

difference between healthy controls and subjects 9 days after concussion 

[F(1,119)=4.87 p=0.029]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Average response time on duration discrimination task for 

concussion subjects monitored for 10 days post-concussion. Concussed 

individuals have much higher response times immediately following 

concussion (within 24 hours) compared to controls (~800 msec longer 

response time). The average response time remains elevated for up to 9 

days before recovering to the control range. The control average was 

plotted on each day for the purpose of comparison to the concussion 

group and was not measured each of the 10 days shown. 

 

Figure 4 shows how the average response time in the amplitude 

discrimination task changes as subjects diagnosed with a concussion 

recover.  It is clear from the graph that within the first 24-72 hours, 

subjects have much higher response times in the amplitude 

discrimination task, with statistically elevated response times remaining 

until 9 days after injury (Single Factor ANOVA analysis shows a 

significant difference between healthy controls and subjects 8 days after 

concussion [F(1,125)=4.75 p=0.032]). 

 

Subject performance in terms of average difference limen (DL) for 

healthy controls and the concussion and recovery groups are plotted in 

(Figure 5). The difference limens were all normalized to the standard 

used for testing; amplitude discrimination DLs were divided by 400 m 

and duration discrimination DLs were divided by 500 msec.  The DLs 

collected from the concussion group are significantly larger than those 
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collected from the healthy controls or the subjects after recovery. The 

average DL in the amplitude discrimination task was 34±3% for the 

concussion group, higher than the average DL for healthy controls 

(10±1%) and the recovery group (16±4%).  Similarly, the average 

DL for the duration discrimination task was 15±1% for the concussion 

group, marginally higher than the average DL for healthy controls 

(8±3%) and the recovery group (9±1%). 

 

In order to better understand the relationship between performance and 

response time, Pearson's correlation coefficients were calculated for each 

test. The control group showed very little causal relationship between 

response time and the duration discrimination DL (r=0.198) or response 

time and the amplitude discrimination DL (r=0.04). A very weak 

relationship was observed for the concussed individuals between 

response time and both duration discrimination DL (r=0.239) and 

amplitude discrimination DL(r=0.249). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Average response time to amplitude discrimination task for 

concussion subjects monitored for 10 days post-concussion. Concussed 

individuals have much higher response times immediately following 

concussion (within 24 hours) compared to controls (~700 msec longer 

response time).  The average response time remains elevated for up to 8 

days before recovering to the control range. The control average was 

plotted on each day for the purpose of comparison to the concussion 

group and was not measured each of the 10 days shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Difference limen of amplitude discrimination and duration 

discrimination (shown as a percentage normalized to the standard) for 

control subjects, concussion subjects and recovery subjects. 

 

 

Discussion 

 

There are two significant findings in this study. The first finding is that 

the concussed individuals were much slower on task performance for 

both the amplitude discrimination task and the timing perception task 

than they were post-recovery. Additionally, the response time 

of concussed subjects was slower than healthy controls and it appears 

that concussed individuals are simply not as efficient at either of the tasks 

described. The second finding is that although duration discrimination 

task response time was only moderately slower for healthy controls, it 

was significantly higher for concussed individuals. The difference in the 

response time for the two tasks – amplitude discrimination and duration 

discrimination – is most likely due to the neural pathways that are 

engaged to accomplish one task versus the other. There is no doubt that 

in both tasks the parietal cortex is involved in processing stimuli, and 

both tasks undoubtedly engage the frontal lobes for decision making. 

The increase in response time in the timing perception task is most likely 

due to the engagement of the cerebellum. The ability of an individual to 

differentiate which of two stimulus epochs is longer in duration has been 

attributed to cerebellar-cortical circuitry: in studies in which TMS was 

used to block activity in the cerebellum, timing perception task 

performance was greatly reduced or eliminated regardless of which 

sensory modality was used [45]. The interesting finding of note is that 

the difference in response times for the two tasks increased 

significantly for the concussed individuals, and the authors suspect that 

this is indicative of increased delays in information processing that are 

exaggerated by an expansion in the cortical circuitry engaged by the 

slightly more complex task. 

 

An obvious future investigation that this finding suggests is a study in 

which subjects are instructed to respond as quickly as possible while 

trying to answer correctly. The authors suspect that accuracy on the tasks 

would be compromised, but this will be an area of future investigation. 

We regard this speed-accuracy trade-off (SAT) as an indication 

of efficiency: the longer it takes an individual to respond to the task, the 

less efficient their task performance. The speed-accuracy trade-off on 

discrimination tasks has been studied and documented extensively since 

the late 19th century, with the ubiquitous and unsurprising finding that 

a focus on speed decreases accuracy of the task [31]. More recent studies 

have shifted focus towards the use of tools such as fMRI and EEG as 

well as deviations from the normal response in individuals with 

neurocognitive disorders or drug use in order to better understand the 

processes taking place [46-64]. fMRI studies have shown an increase in 

activity in the striatum and pre-supplementary motor area when speed is 

emphasized for a task [48, 49, 51, 53, 54]. Evidence points towards 

increased baseline activity in pre-motor areas, but not in sensory cortical 

or primary motor areas [47]. EEG studies confirm the finding that speed 

emphasis does not affect sensory processing, and if that is the case, then 

accuracy on the discrimination tasks would not be compromised by the 

reduced response time [58, 59, 63]. 

 

An interesting finding of this study appears to be that the DL for 

amplitude discrimination deviates more from control values for 

concussed individuals than does the DL for duration discrimination, yet 

the reverse appears to hold true for response time. For response time, the 

duration discrimination value deviated more from control values for the 

concussed condition. This leads to some interesting questions about the 
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complexity of sensory perceptual tasks to be left for future studies. It is 

not completely predictable how accuracy might change with different 

instructions. In this study, there was a very weak, or lack of, correlation 

between accuracy and response time. Instructing individuals to respond 

more rapidly could have a significant impact on the accuracy score, 

particularly when comparing healthy controls to concussed individuals. 

For example, one of the few studies of SAT in individuals with 

neurocognitive disorders focuses on adolescents with ADHD. Mulder et 

al. found that when adolescents with ADHD were instructed to respond 

accurately to a visual task, they responded more quickly than and with 

equal accuracy of healthy age-matched controls on a visual task [65]. 

However, when subjects were told to respond as quickly as possible, 

the adolescents with ADHD had similar speed and accuracy to healthy 

controls. The use of drugs has also been investigated in relation to SAT 

processing. Alcohol, in particular, has been shown to decrease accuracy 

on a range of tests, but changes in speed relative to a placebo control 

group are variable [66-69]. In contrast, the dopamine agonist 

bromocriptine showed no change in SAT compared to placebo control 

[70]. Thus, it appears that neurological alterations have an unpredictable 

influence on the speed-accuracy trade off.  

 

The difference observed in this study for response time between 

concussed and non-concussed individuals suggests that regardless 

of which tactile discriminative task is performed, the response time data 

could provide additional information that will strengthen the overall 

evaluation of an individual with neurological insult. Additionally, the 

difference between response times on the amplitude discrimination task 

versus the timing perception task increases significantly when a subject 

is concussed. One implication of this finding is that the response time 

difference is exaggerated by the neurological insult introduced by the 

concussion simply because of the additional cerebellar circuitry 

involved. In other words, decreasing overall information processing 

speed of the CNS will result in a much longer response time for tasks 

involving significantly more circuitry.  This hypothesis is supported by 

the current data, and future research will address this interesting 

question. The operational significance of this finding is that evaluating 

response time differences between two tasks obtained post neurological 

insult would not require a pre-injury measure to be obtained to determine 

an individual’s status because the important measure could be the 

response time performance difference. Many different methods are 

currently being deployed for concussion assessments, the majority 

of which require pre-injury baseline assessments. Additional measures, 

such as the response time for discrimination task, could potentially 

improve overall assessment of individuals suspected of concussion, 

particularly when a multi-parametric approach is used [16]. 

 

Conclusion 

 

The overall objective of our work is to develop metrics that are sensitive 

to alterations in neurological function, and although the response time 

metric is a by-product of other assessments, it appears that it could be 

very useful in evaluating a number of pathologies.  Subsequent reports 

will describe response times for somatosensory discrimination tasks in 

other pathologies as well as a more comprehensive review of the 

differences in the neurosensory assessments observed between healthy 

controls and concussed individuals. 
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