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A B S T R A C T 

 

What are the genitourinary pathologies in need for a tissue 

engineering solution? 

 

Virtually the whole genitourinary tract can be affected by several 

pathologies, which could find a solution using tissue engineering. 

Nevertheless, in this review we want to focus only on diseases and 

reconstructive strategies affecting the urethra and vagina. 

 

Disorders affecting the urethra 

 

Urologic patients often show up with congenital and/or acquired tissue 

and organ dysfunctions requiring surgical reconstruction to re-establish 

a normal genitourinary system function. Hypospadias (Figure 1) and 

urethral stricture disease are amongst the most widespread. Hypospadias 

is the most frequent penile malformation (73% of all congenital penile 

anomaly): one out of 250 newborn males are affected and several studies 

have reported an increasing prevalence of hypospadias in humans [1-7]. 

Hypospadias prevalence have been showed to be low in Asia and high 

in North America [8]. Studies showed that hypospadias heritability is 

estimated to 57-77% and are equally transmitted through the maternal 

and paternal sides of the family [9]. The recurrent risks for brothers and 

sons in the same family being similar, genetic and shared environment 

Urologic and gynaecologic patients often manifest congenital and/or acquired tissue and organ dysfunctions 

that require surgical reconstruction to recreate the normal genitourinary system functions. Such 

reconstruction is still a challenge due to the limited availability of suitable tissues, especially for severe 

urethral and vaginal replacement. Traditional intervention methods have varying degrees of donor site 

morbidity or inherent side effects.  

Interestingly, tissue engineering is a growing field that aims to replace or regenerate these dysfunctional 

tissues and organs with autologous cells, biomaterials, or a combination of both. Experience gained from 

tissue engineering suggests that the use of acellular matrices alone is not successful in supporting tissue 

growth over large surfaces. Cellular constituents need to be isolated, cultured and grown in vitro on 

scaffolds, then transplanted in vivo, in order to achieve successful three-dimensional tissue regeneration. 

Biomaterials are the backbone for cell-seeded reconstruction of the genitourinary tissues. Several research 

teams have explored a different cell culture approach based on self-assembly. 

This innovative technique relies on the capacity of cells cultured in the presence of ascorbate to secrete and 

deposit their own extracellular matrix forming a tissue-like substance. The mechanical and physical strength 

properties of these reconstructed tissues are similar to that of natural native tissues in certain models. Tissue 

engineered substitutes for urethral and vaginal mucosa were produced and subcutaneously grafted with 

success opening the way to new therapeutic strategies to correct genitourinary defects. 
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factors should play a main role in familial hypospadias [10]. 

Furthermore, maternal hypertension, oligohydramnios, and premature 

delivery are linked with sever hypospadias suggesting a main role of 

underlying placental insufficiency potentially through inadequate levels 

of human chorionic gonadotropin (hCG) to the fetus [11]. In this clinical 

condition, the urethral opening is inadequately positioned below the tip 

of the glans penis and could be positioned anywhere along the ventral 

side of the penis (Figure 1). Depending on where the urethral opening is 

located, the severity of the hypospadias can be minor (close to the glans) 

or severe (meatus is close to the scrotum or within it) and often requires 

surgery [12-14]. Frequent and impactful, hypospadias is an important 

health issue and can be a substantial burden on health-care resources 

[15]. Indeed, the most severe cases could require subsequent surgeries 

due to complications such as complete dehiscence, stenosis or fistulae 

[16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schema of urethra and vagina anatomic and histologic features. Left: Urethra, classification of hypospadias on the basis of the position of the 

meatus is indicated. Right: Vagina. 

 

Male urethral stricture disease most commonly results from injury, 

instrumentation, infection, non-infectious inflammatory conditions of 

the urethra, and after prior hypospadias surgery. Less common causes 

include congenital urethral strictures and those resulting from 

malignancy. It occurs at a rate as high as 0.6% and results in more than 

6,000 inpatient visits yearly in the U.S. Yearly office visits for urethral 

stricture numbered almost 1.8 million between 2005 and 2013. The total 

cost of urethral stricture diseases in USA in 2010 was almost $300 

millions. A diagnosis of urethral stricture increased health care 

expenditures by more than $6,000 per individual yearly [17]. Patients 

with urethral stricture disease appear to have a high rate of urinary tract 

infection (41%) and incontinence (11%) [18]. A wide variety of tissues, 

such as skin grafts, bladder and oral mucosa, have been used for urethral 

repair [19]. However, all of these substitutes have limitations compared 

to autologous urethral tissue, which can lead to complications (e.g. 

stricture formation, graft failure) [20-22]. Furthermore, the amount of 

tissue that can be harvested from a donor site is limited, which can be 

problematic, especially in the case of long defects. For oral mucosa, the 

actual gold standard in clinic for challenging cases, this would mean a 

two-stage surgery and mucosa from the inside of both cheeks being 

harvested, causing significant discomfort postoperatively. Since mucosa 

cannot be harvested twice from the same site, this limits surgical options 

if a complication occurs. To overcome these difficulties, alternative 

methods for urethral reconstruction have been explored. 

 

Current tissue engineering strategies for urologic tissue 

reconstruction 

 

Tissue engineering (TE) is an emerging field offering the possibility of 

providing true biological substitutes with patient-specific properties to 

restore the structure and function of pathologically altered tissues. 

Several groups have attempted TE urethral substitution by using 

acellular matrices such as Bladder Acellular Matrix Graft (BAMG) and 

Small Intestinal Submucosa (SIS), or cellularized matrices [23-32]. 

These matrices are prepared from native tissues by decellularizing and 

sterilising it. A major issue concerning acellular matrices, as shown in 

rabbits by Dorin et al., is that urothelial regeneration in acellular graft is 

limited to 0.5 cm, which compromises success in more complex cases, 

such as long strictures [33]. Synthetic polymers have also showed 

advantages (PLLA and PLGA) to form tridimensional (3D) organs 

biocompatible at a low cost with a control of mechanical properties. 

However, a synthetic scaffold doesn’t allow a correct epithelial cell 

differentiation into a well-organized tissue. Long-term experiment 

hasn’t been achieved because of urothelial low differentiation and 

apparition of microfistulas. TE matrices containing autologous cells in 

addition to extracellular matrix are more promising. The main advantage 

of this method is that a large autologous cell graft having the ability to 

grow in vivo without rejection can be created with limited material, such 

as a piece of oral mucosa. Moreover, studies have reported that stem cells 

can be obtained from urine, making this approach even more polyvalent 
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[34, 35]. Despite significant progress in the urethral TE field, very few 

teams have proceeded to clinical trials and published their results to date 

[36]. However, the four clinical trials so far conducted present good 

results in a limited number of patients with long-segment and/or 

complex stricture disease [37-41]. Although these models are certainly 

far from an “off-the-shelf” alternative, with consistently reproducible 

outcomes, this could offer an alternative for challenging cases requiring 

long-segment urethral replacement [42]. However, after long periods in 

culture to obtain well-differentiated tissues, exogenous matrices become 

difficult to manipulate and lose mechanical and physical properties.  

 

Disorders affecting the vagina 

 

Patients presenting congenital or acquired malformations of the 

reproductive tract are often in need of extensive surgical reconstruction. 

Cloacal and bladder exstrophy, in which the anatomical structures of the 

pelvis (including bladder, genitalia, and colon) fail to fuse in the midline, 

are examples of such malformations. Children afflicted with intersex 

disorders, such as congenital adrenal hyperplasia and cloacal anomalies, 

can have significant anatomical defects and are often in need of extrinsic 

tissue sources for reconstructive surgery. Müllerian agenesis, also 

known as Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is the 

most common anomaly of the Müllerian duct development, which 

results in vaginal agenesis. MRKHS covers a range of anomalies that are 

all associated with vaginal and uterine abnormalities (1500 to 4000 

female births), but might also have other associated findings [43, 44]. 

Pelvic floor disorders affect nearly one-third of premenopausal women 

and half of postmenopausal women [45, 46]. Likewise, in the US, 

numbers of surgical interventions for pelvic organ prolapse and urinary 

incontinence are not negligible. In 2010, approximately 300 000 women 

underwent surgical procedures to repair pelvic organ prolapse (POP); 

33% of these were performed with mesh, with 25% of mesh placed 

transvaginally. Approximately 260 000 women underwent incontinence 

surgery, with 80% of repairs performed using a mesh device, with a 

direct cost of over $1 billion dollars annually in the United States [45, 

47-50]. The likelihood of a woman requiring surgery for pelvic organ 

prolapse or urinary incontinence in her lifetime is 10–20% [51-53]. 

Evidence of efficacy for these mesh products is lacking, and rates of 

complications such as erosions, pain, infections, and vaginal shrinkage 

are unacceptably high at around 10 % [54-59]. Those complications will 

often require interposition tissue like a graft, to cover the defect. The 

U.S. Food and Drug Administration (FDA) ordered the manufacturers of 

all remaining surgical mesh products indicated for the transvaginal repair 

of pelvic organ prolapse to stop selling and distributing their products in 

the U.S. immediately [60]. Women with cervical, uterine, ovarian, rectal, 

vaginal, or bladder cancer may require partial or total vaginal resection, 

and they may need partial or total vaginal replacement for the recovery 

of sexual function and restoration of native anatomy. Vaginal stenosis 

could also happen after radiotherapy treatment to cure colorectal and 

cervical cancers (in 80% of treated women) [61]. It is characterized by a 

decrease in the length and diameter of the vagina, followed by scar tissue 

formation; for example, 4,000 women in Canada could be affected post-

radiotherapy.  Moreover, vaginal stenosis or strictures could also happen 

in the case of: vaginal atrophy, hypoestrogenic states, inflammatory and 

autoimmune diseases and chemical vaginitis [61]. Transient and long-

term injuries to the vagina and its supportive tissues have also been 

documented following vaginal delivery, and most parous women have 

some anatomical evidence of disrupted support [62-64]. Gender 

reassignment is also a challenge and a long-term perspective of vaginal 

tissue engineering. Thus, the search for an ideal tissue remodelling 

material for uro-gynaecological repair is ongoing. 

 

Current alternative strategies, tissue engineering for vaginal 

regenerative medicine 

 

Vaginal anomalies represent a major women’s health issue because 

nearly 1% of women will suffer from these pathologies resulting in 

significant psychological impacts. Interestingly, tissue engineering is a 

field that aims to replace or regenerate these dysfunctional tissues and 

organs with autologous cells, biomaterials, or a combination of both. 

Successful vaginal reconstruction in these patients depends largely on 

the use of a sufficiently abundant tissue substrate that adequately 

performs the physiological functions of the vagina. Past techniques have 

often relied on autologous tissues such as intestine or skin, which are 

often associated with complications due to the inherent physiological 

differences of these substrates. In an attempt to improve these results, a 

variety of biodegradable substitutes, including collagen matrices and 

decellularized bladder submucosa, have been used for vaginal 

replacement [65]. Reconstructions using theses substitutes have usually 

been unsuccessful owing to functional, structural, mechanical, or 

biocompatibility problems. The use of the patient’s vaginal tissue for 

reconstruction would provide the most elegant and successful solution, 

but this has frequently not been feasible because of the relative paucity 

of healthy vaginal tissue for autologous grafting. A tremendous clinical 

need exists for the development of technologies to facilitate the 

regeneration of injured or diseased tissues and organs. The unrelenting 

prevalence of trauma, congenital defects and diseases, such as cancer, 

drives the demand, which becomes increasingly urgent as the global 

population expands and ages. A wide variety of tissues and organs would 

benefit from engineering-based repair or regeneration. Several graft 

materials have been used to line the surgically created neovaginal cavity, 

including myocutaneous flaps or intestinal segments, full-thickness or 

split-thickness skin grafts, amniotic membrane, peritoneum, 

decellularized matrices, oral mucosa and vaginal epithelial tissues [32, 

66-73]. These techniques are associated with graft contracture and/or 

stenosis that may require long-term dilatation. Oral mucosa 

vaginoplasties are associated with donor site morbidities due to the large 

tissue volume being harvested for creating the neovagina. Furthermore, 

the amount of tissue that can be harvested from a donor site is limited, 

which can be problematic, especially for large defects. To overcome 

these difficulties, alternative methods for vaginal reconstruction have 

been explored. Few groups have attempted TE vaginal reconstruction 

using acellular and cellularized matrices from natural or synthetic origin 

[74-79]. The tissues were transplanted into mice, rabbits or women. But 

more preclinical and clinical studies are required due to the limited 

number of subjects enrolled in those studies and it remains difficult to 

determine if the optimal technique has been used. 

 

Self-assembly tissue engineering 

 

A new type of extracellular matrix (ECM) has been explored: the one 

produced by the “self-assembly” method. Major discoveries and 

therapeutic achievements have been made possible because of this 

unique technique which allows production of reconstructed tissues free 

of any foreign matrices [80]. Indeed, the use of exogenous biomaterials 

may lead to immunologic and foreign body reactions and transmission 
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of infections. This technique relies on the capacity of the cells cultured 

in the presence of ascorbic acid to secrete and deposit their own ECM to 

form cohesive sheets of cells and collagen (Figure 2). Whereas most 

biomaterials lose their mechanical and physical strength properties in 

culture, the properties of self-assembled tissues are roughly similar or 

even exceed that of natural native tissues in certain models due to a 

stabilization of metalloproteinases [81, 82]. Using the self-assembly 

technique, it has been possible to reconstruct different cellularized 

models from various stromal cells originating from skin, fat, bladder and 

vagina which present an excellent mechanical strength [83-86].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schema of production of reconstructed tissues using the self-assembly technique: A- Reconstructed flat model; B- Reconstructed tubular model. 

Same techniques were used to produce urethra and vagina but with organ-specific mesenchymal and epithelial cells. Some elements of the protocol were 

adapted (e.g.: culture medium used to culture for vaginal cells is different from the one used to culture urologic cells). 

 

 

 

 

 

 

 

 

Figure 3: Macroscopic view of reconstructed tissues: A- Reconstructed flat model. B-Reconstructed tubular model at the end of the maturation period in 

the bioreactor. Tubes are easy to handle and resistant to sutures, using resorbable 7-0 Maxon.  C- Urethral model implanted on rabbit urethra as a patch (half 

diameter). 

 

Self-assembly to reconstruct genitourinary tissues  

 

A TE genitourinary tubular graft was successfully assembled (Figure 3). 

Engineered tissues were subjected to maturation in dynamic conditions 

in a bioreactor and were characterized for histological and mechanical 

properties [81, 87]. This construct has outstanding histological 

organisation and very good mechanical resistance; hence it became 

obvious to use this tubular urological tissue as a urethral substitution 

model. The advantage of this cell-based technique to produce tissue-

engineered urethra by self-assembly technique is that it contains 

mesenchymal cells that communicate with epithelial cells either through 

release of cytokines and growth factors or cell-cell contact. Although the 

best cell source for bioengineering urethras by self-assembly is 

mesenchymal cells from the patients target organ, it is unpractical as 

there are risks associated with the biopsy of the urethra such as creating 

a fistula. 

 

Hence another source of easily obtained cells should be considered. We 

have initially developed the urethral construct from dermal fibroblasts 

(DF) but bladder mesenchymal cells have also been used with success 

[81, 88]. Adipose-derived stem/stromal cells (ASC)-derived biomaterial 

for bladder regeneration were also successfully engineered [89]. ASC 

are easily harvested from a small sample of subcutaneous fat and yield a 

high proportion of multipotent cells (about 2%) [90-92]. They have 

immunomodulatory and angiogenic properties that could potentially 

improve the quality of the construct [93, 94]. Additionally, endothelial 

cells (EC) could be added to the model and form an advanced 3D 

capillary-like network to improve transplantation outcomes, avoiding 

ischemic events after the graft [95, 96]. This is the main obstacle 

observed in the development of a thick biomaterial or reconstructed 

tissue in vitro that can be used in human clinical applications. Indeed, 

neovascularization of a tissue is a slow process that can take over 15 days 
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for a 1mm-thick tissue [97, 98]. The vascular network already present in 

the conventional autologous graft can reconnect to the host’s 

bloodstream in 4 days (inosculation) [99-103]. The solution to the 

problem of re-vascularization of in vitro reconstructed tissues could 

reside in the reconstruction of a capillary-like network within the graft 

prior to implantation. Encouraging results were obtained with 

inosculation on day 4 of transplantation with non-transfected EC (Figure 

4) [95, 104]. Besides improving graft-take, the early capillary network 

could also help to clear the blood cells, fibrin and growth factors like 

TGF-β1, which can lead to fibrosis and disease recurrence [105]. Using 

a similar technique, a vaginal mucosa (VM) substitute was recently 

produced. The best cell source for bioengineering VM by self-assembly 

is cells from the patient’s target organ, therefore cells from human vagina 

were extracted and used for the reconstruction. The reconstructed tissues 

presented a good mechanical resistance and elasticity. They displayed a 

well-differentiated epithelium with expression of oestrogen receptor-

beta and glycogen storage (Figure 5A) and could be preendothelialized 

(Figure 5B). Furthermore, it has been grafted subcutaneously in mice. 

The tissue survived with no sign of necrosis during the 2 months of in 

vitro reconstruction and 3 weeks after implantation [86]. 

 

 

 

 

 

 

Figure 4: Effects of endothelial cells on reperfusion of the graft after 

subcutaneous implantation in mice: Macroscopic aspect. Tubular 

urethral models reconstructed without (on the left side) or with 

endothelial cells (EC, right side). Macroscopically, UM with EC was 

clearly more vascularized at 14 days in the UM. At 28 days, tubes were 

well incorporated in mice tissues in both models but looked healthier 

with EC (graft take). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Vaginal model. A- Photograph of a a slice of reconstructed 

vaginal model stain by the Masson’s trichrome protocol. Epithelial 

layers are clearly visible, especially the one which contain glycogen 

required to maintain adequate pH for lactobacilli proliferation. B- 

Photograph of a slice of reconstructed vaginal model with endothelial 

cells (EC) stain by the Masson’s trichrome protocol. Capillary-like 

network is visible throughout the engineered tissue. C- Macroscopic 

view of the grafted vaginal model on the back of a mouse. D- 

Macroscopic appearance of the grafted material 3 weeks post-

implantation. 

Translation to rabbit as an animal model 

 

The absence of exogenous materials and the autologous property of this 

self-assembled model represent significant advantages comparatively to 

other available grafts. Therefore, an autologous TE urethra was 

implanted in a rabbit model, the gold standard animal model to study 

penile surgery [95, 106, 107]. Technical adjustments were necessary to 

replicate results when using rabbit cells [108]. Hence, experimental 

settings should be altered to include organ-specific mesenchymal cells 

extracted from the bladder. This led to the formation of more elastic 

tissues and more differentiated urothelium devoid of K14 expression 

[88].  

 

Urethral reconstruction by the self-assembly approach: 

limitations and perspectives 

 

Urethral anomalies represent a major public health issue because nearly 

1% of men are suffering from these pathologies that can have significant 

psychological impact. Treatment involves surgical correction and 

current therapeutic options are associated with morbidities and lack of 

durable long-term results. The solution may lie in the reconstruction of 

an autologous urethra from a small biopsy on the patient, in vitro 

reconstruction and its later implantation. A purely autologous tissue, 

with less fibrosis, would have a better function. The presence of cells at 

implantation would provide better growth potential, especially for 

pediatric patients. The urethral substitute produced by the self-assembly 

protocol is fully autologous and free of exogenous materiel, it can be pre-

endothelialized and therefore possess, before implantation, histological 

and mechanical near-native features. Thus, a reduction in adverse events 

can be expected following the graft of this living engineered urethral 

tissue, which should grow as the child ages. It would attenuate the 

associated morbidity for the patients, at the implantation and harvesting 

sites, and decrease the financial burden of urethral anomalies on the 

healthcare system. Even if this model is associated with many 

advantageous characteristics, preparation time of the graft is not 

negligible. From cell culture to complete maturation, the reconstruction 

process takes 3 months. However, penile anomalies are chronic 

pathologies and surgical correction is made on an elective basis. Most 

patients must wait months before being operated. Consequently, 

additional delay to surgical correction does not represent a major 

inconvenience.  

 

The necessity of a skin, bladder or adipose tissue biopsy is also a point 

to keep in mind, even if this intervention is simple and minimally 

invasive for skin and fat. Nevertheless, in the future, induced pluripotent 

stem cells (iPS), which can be produced from the blood of the patient, 

could be differentiated into the entire cell types required to reconstruct 

urethral substitutes. This new technology could avoid the invasive 

procedures such as biopsy harvesting. Nevertheless, it is absolutely 

required to control the differentiation step for all cell types used to avoid 

misdifferentiation and potential development of tumours [109]. 

 

The substantial expense related to the fabrication of this biological graft 

material should be taken in consideration, but it would be fully 

autologous, an advantageous characteristic for the patients. The current 

gold standard method is already associated with substantial expenses 

such as the frequent need for a surgery to be performed in 2 stages (2 

different anesthesia, many months apart), the additional morbidity to the 

Int J Regenr Med doi: 10.31487/j.RGM.2019.03.01    Volume 2(3): 5-9 



Surgical Correction of Genitourinary Disorders Using the Self-Assembly Tissue Engineering       6 

 

patient and the absence from work for a second major penile surgery (6 

weeks each time).  

 

The self-assembly approach to reconstruct urological tissues without 

biomaterial would open the door to the reconstruction of ureters, corpus 

spongiosum and cavernosa of the penis, which would significantly 

improve the quality of life for patients severely handicapped by 

congenital malformations of the genitals. 

 

Vaginal reconstruction by the self-assembly approach: 

limitations and perspectives 

 

The same limitations and perspective described for the urethral model 

apply to the vagina model. The development of an autologous vaginal 

mucosa reconstructed by TE would be a major advance in the field of 

uro-gynaecology and would also have a considerable clinical impact. To 

provide non-immunogenic replacement tissues, autologous and 

biomaterial-free, in order to circumvent the shortage of available tissues, 

is the main sought benefit of the reconstruction of vaginal tissue using 

patients’ cells with the self-assembly approach. Surgical reconstruction 

using the self-assembly method could significantly improve patient 

quality of life and may potentially decrease the financial burden of 

vaginoplasty on the healthcare system.  

 

Conclusion 

 

Genitourinary tissues were developed using the self-assembly approach 

using human organ-specific cells and they were implanted into animals 

with success. They constitute a promising avenue for surgical correction 

of various defects from congenital or acquired origins. 
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