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A B S T R A C T 

Atherosclerosis is a cardiovascular disease featuring a chronic inflammation due to the accumulation of 

lipids within the tunica intima of arteries. The development of the disease depends on dynamic changes in 

the vascular biology. Immune system cells directly influence the pathogenesis of atherosclerosis during the 

inflammatory process. Currently, atherosclerosis diagnosis is performed by non-invasive or invasive 

methods depending on the type of arteries that are being investigated. New diagnostic and therapeutic 

procedures should improve the quality of life of patients. Some of the genes that could be biomarkers of 

cardiovascular diseases are TP53 and eNOS. The protein p53 is recognized as a tumor suppressor protein 

that controls DNA repair, cell cycle progression or arrest and apoptosis. These functions that p53 exerts are 

well known and some other functions are being investigated, such as its role in the cardiovascular system. 

The eNOS gene regulates the levels of nitric oxide, which is vital for several intracellular biological 

functions, such as vasodilation, vascular homeostasis, protection of arteries against injuries, cellular growth, 

signaling pathways and immune response among others. Here, we used an in-silico approach to predict four 

models of interaction between clinically important proteins (eNOS and p53), to predict the interface of 

interaction and to rationally design modulating peptides to be tested in vitro and in vivo and possibly used 

as a therapeutic agent. 

Introduction 

Atherosclerosis is a chronic inflammatory disease that occurs by the 

accumulation of lipids in the innermost layer (tunica intima) of small, 

medium and large caliber arteries. The atheromatous plaque, together 

with platelet factors, stimulate the proliferation of muscle cells within 

this region. Thus, muscle cells, leukocytes and lipids remain stuck in this 

region leading to the narrowing of the arterial lumen. This intricate 

deposit might progress into fibrosis and the calcification of the 

atheromatous plaque. Its growth causes an obstruction of the artery and 

consequent local ischemia [1]. Moreover, the development of the disease 

depends on dynamic changes in the vascular biology [2]. The main 

etiopathogenic mechanism of cardiovascular diseases is the process of 

atherogenesis. Immune system cells play an important role in the 

pathogenesis of atherosclerosis during the inflammatory process that 

occur in the endothelium [3]. Atherosclerosis usually begins in 

childhood and progress silently over a long pre-clinical stage and 

eventually manifests clinically during the middle age of an individual 

[4]. Atherosclerotic cardiovascular diseases and its clinical 

manifestations, such as myocardial infarction and ischemic stroke, are 

the leading causes of morbidity and mortality worldwide [5]. Many 

factors have been reported to be associated with an increased risk of 

cardiovascular events [6]. The most widely studied factor is by far the 

low-density lipoprotein (LDL). Lipoproteins, such as LDL-cholesterol, 

containing apolipoprotein B, very low density lipoproteins (VLDL) and 
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their remnants, intermediate density lipoproteins (IDL) and lipoprotein 

A directly influence the development of atherosclerosis [7]. 

 

Currently, atherosclerosis diagnosis is performed by non-invasive (echo 

Doppler) and invasive methods (angiotomography and catheterization), 

depending on the type of arteries that are being investigated. Even 

though the pathology has a genetic background, there is no genotypic 

technique efficient enough for a non-invasive and reliable diagnosis 

method. This is due to the complex genetic trait that characterizes 

atherosclerosis and the diversity of genes and polymorphisms that is 

related to the disease [8-10]. Several researches have been conducted in 

order to develop genetic and molecular tests to evaluate individuals at 

high risk of developing atherosclerosis [11-13].Some of the genes that 

could be biomarkers of cardiovascular diseases are TP53 (tumor protein 

53) and eNOS (endothelial nitric oxide synthase). TP53 codes for the 

protein p53, which is known as the guardian of the genome due to its 

function related to genomic stability [14]. In addition, p53 is recognized 

as a tumor suppressor protein that controls DNA repair, cell cycle 

progression or arrest and apoptosis [15-17]. These functions that p53 

exerts are well known and some other functions are being investigated, 

such as its role in the cardiovascular system. It is clear that p53 somehow 

influences cardiovascular homeostasis but details on how that is 

performed is not clear yet. Overexpression of p53 increases death rates 

in patients who suffered from myocardial infarction, decreases heart 

function, angiogenesis and distribution of oxygen [18-20]. Nitric oxide 

(NO) is a stress-signaling compound and increased level of NO can 

cause DNA damage, which activates p53 and reflects on vascular 

homeostasis and susceptibility to diseases [21, 22]. 

 

The endothelial dysfunction presented by atherosclerotic patients 

responds to several risk factors related to cardiovascular diseases. High 

cholesterol levels, hypertension, diabetes, smoking and other 

environmental factors lead to a severe pro-inflammatory and a pro-

thrombotic endothelial state [23-28]. In addition, genetic polymorphisms 

influence endothelial dysfunction because several genes and the proteins 

they code for, exert crucial functions in regulating vascular endothelial 

stability [29-31]. The eNOS gene regulates the levels of nitric oxide, 

which is vital for several intracellular biological functions, such as 

vasodilation, vascular homeostasis, protection of arteries against 

injuries, cellular growth, signaling pathways and immune response 

among others [32-37]. The eNOS gene has been investigated as a 

possible biomarker for non-invasive diagnostic and more efficient 

treatment of cardiovascular diseases [31, 38-40]. 

 

Here, we used an in-silico approach to predict four models of interaction 

between clinically important proteins (eNOS and p53), to predict the 

interface of interaction and to rationally design modulating peptides to 

be tested in vitro and in vivo and possibly used as a therapeutic agent. 

 

Materials and Methods 

 

The three-dimensional structure of the proteins eNOS and p53 were 

modeled by the I-TASSER (Iterative Threading Assembly Refinement) 

server [41]. The modeling relies on templates based on homology from 

protein structures experimentally resolved and available in the PDB 

(protein databank). The predicted structure is assembled by fold 

recognition through Monte Carlo simulations. Briefly, the pipeline used 

for the prediction of the target protein structures consists of six basic 

steps. The prediction of the secondary structure by PSSpred (Protein 

Secondary Structure Prediction) and identification of templates by 

LOMETS (Local Meta-Threading-Server) [42]. Then, assembly of 

ranked fragments through Monte Carlo simulations; clusterization of 

structures according to conformation and energy using SPICKER in 

order to identify near native structures; molecular dynamics structure 

refinement and finally the prediction of biological function by COACH 

[42-45]. 

 

The domains of eNOS and p53 were identified by KBDOCK and 

InterPro [46, 47]. Protein-protein docking analyses were carried out by 

ClusPro, through clusterization and minimization of the predicted 

models [48]. The protein-protein interaction (PPI) and the interface of 

interaction between the target proteins are build based on three different 

coefficients considered individually (electrostatic-favored, 

hydrophobic-favored and Van der Waals-favored) or together (balanced-

favored). The predicted PPIs are ranked according to energy scores 

based on those coefficients. The visualization software PyMol was used 

in order to analyze the PPI results, the interface of interaction between 

eNOS and p53, predicted hot spots, polymorphic residues and to design 

peptides able to modulate the interaction between those proteins. Amino 

acid residues that significantly contribute to the free-energy of binding 

and stability of PPI within the interface of interaction were recognized 

by KFC2 [49]. The basis for the identification of such amino acid 

residues is the structural and chemical analysis of the environment 

around residues. Moreover, hot spots experimentally determined by 

alanine scanning mutagenesis are taken into account for the prediction 

of hot spot present in the proteins under investigation. The hot spot 

prediction scores are based on conformation (scorea) and on biochemical 

properties (scoreb). Clinically important polymorphic residues for the 

eNOS and p53 proteins were identified through the dbSNP (database of 

single nucleotide polymorphism. 

 

Results and Discussion 

 

The protein eNOS regulates the availability of NO, a lipophilic 

compound that takes part in several biological mechanism [50]. NO 

produced by the activity of eNOS modulate, beyond other functions, the 

degree of constriction experienced by a blood vessel, cell cycle 

progression, senescence or apoptosis, immune system cells activity and 

platelet aggregation [51-55]. Moreover, availability of NO influences 

cancer, genomic stability and cardiovascular diseases [31, 39, 56, 57]. 

Regarding the p53 protein, which is coded by the TP53 gene, is known 

as the guardian of the genome. The protein is a classical tumor 

suppressor protein related to cancer and several other diseases related to 

genomic instability, such as endometriosis, atherosclerosis and infertility 

[58-61]. Experimental approaches along with bioinformatic tools have 

contributed to increase our knowledge regarding diseases, development 

of new diagnosis and therapeutic strategies  [62, 63]. The in silico 

prediction of hot spots within the interface of protein-protein complexes 

drive design of small peptides that can modulate PPIs, being a promisor 

technique for new treatment of diseases [63-65]. The basis for these 

approaches is the fact that certain amino acid residues are generally 

conserved among structure-related proteins and proteins with 

complementary functions. Variation on those conserved hot spots alter 

the conformational state of a protein and multi-protein complexes 

increasing the susceptibility to diseases to diseases through reduction, 

loss or gain of function [66]. It has been investigated the role of p53 in 

atherosclerosis and other cardiovascular diseases. NO has been 

implicated in p53 functions [21]. Since eNOS is responsible for NO 
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synthesis and availability, we propose four different modes of 

interactions between p53 and eNOS according to energy parameters. Our 

approach led to the design of four peptides that could modulate the 

interaction between the target proteins and their function in 

atherosclerosis. To our knowledge, no study has aimed to propose such 

approach related to eNOS and p53. 

 

Figure 1 shows the four best stable modes of interaction between eNOS 

and p53 and the interface of interaction between the proteins under study. 

The modes of interaction are based on coefficients of energy, including 

electrostatic-favored (Figure 1B), hydrophobic-favored (Figure 1C), 

Van der Waals-favored (Figure 1D) and balanced coefficients of energy 

(Figure 1A). The latter was used to build a mode of interaction that 

considers all the other three types of coefficients. The mode of 

interaction for the proteins related to the balanced coefficients and that 

for the electrostatic-favored coefficients are very similar (Figures 1A and 

B). The main differences between these two predicted states are the hot 

spots residues identified for each situation, even though some of these 

hot spots repeat within the interface for both approaches (Tables 1 and 

2). Several studies have shown how electrostatic forces contribute to 

PPIs, including those related to diseases development [67-69]. 

 

Figure 1C and 1D show a predicted mode of interaction between eNOS 

and p53 regarding hydrophobic-favored and Van der Waals-favored 

coefficients, respectively. The conformation of the complex for these 

two last coefficients are more similar to each other than the conformation 

predicted for electrostatic and hydrophobic forces. The hot spot residues 

that most contribute to the interaction and stabilization of the complex 

for the hydrophobic and Van der Waals forces are described in tables 3 

and 4. Hydrophobic effect in PPIs are one of the main causes of hot spots 

clustering within the interface of interaction between proteins or protein 

and ligands [70]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Models for the eNOS and p53 interaction according to 

different chemical forces coefficients. 

A – Model of interaction between eNOS and p53 taking into 

consideration all three energy coefficients used in the present study. B - 

Model for interaction between eNOS and p53 taking into consideration 

electrostatic-favored coefficients. C – Model for eNOS and p53 

interaction regarding ahydrophobic-favored forces. D - Model for eNOS 

and p53 interaction regarding Van der Waals-favored coefficient. Blue: 

eNOS; red: p53 dimer; yellow: interface of interaction between the target 

proteins. Clusterization drives hot spot prediction and the design of 

modulating peptides in several approaches such the ones presented here. 

In fact, we found that our predicted hot spots in the interface of 

interaction between eNOS and p53 are near one to another (Table 3), 

forming clusters and contributing for the stability of the complex. 

Actually, clusters of hot spot residues were also predicted for the other 

coefficients of energy (Tables 2 and 4). 

 

Next, we analyze the hot spot residues that most contribute for the 

stabilization of the complex in each model of eNOS and p53 interaction. 

We identified six mains hot spot residues for the balanced model of 

interaction (Figure 2). These amino acid residues establish polar contact 

with other hot spots present within the cluster and also with neighbor, 

less important, residues. 

 

Table 1: Hotspot residues that significantly contribute to the free-energy 

of binding through balanced coefficients of energy  

Chain Residue Scorea Scoreb 

A Arg70 0.36 0.04 

B Trp244 1.38 0.29 

B Gln476 0.52 0.06 

B Asp478 1.37 0.01 

B Trp480 1.28 0.29 

a His178 1.21 0.04 

a Met243 1.14 0.22 

a Arg280 0.47 0.07 

Scorea – Score based on conformation 

Scoreb – Score based on biochemical properties 

 

Table 2: Hotspot residues that significantly contribute to the free-energy 

of binding through electrostatic-favored coefficient of energy. 

Chain Residue Scorea Scoreb 

A Phe105 0.63 0.04 

A Trp244 1.40 0.32 

A Arg474 0.99 0.14 

A Gln476 0.55 0.02 

A Trp480 1.66 0.31 

B Arg70 0.80 0.16 

a Arg175 0.78 0.36 

a His178 1.20 0.17 

a His179 1.46 0.29 

a Arg181 0.72 0.06 

a Asn239 1.18 0.01 

Scorea – Score based on conformation 

Scoreb – Score based on biochemical properties 

 

Table 3: Hotspot residues that significantly contribute to the free-energy 

of binding through hydrophobic-favored coefficients of energy  

Chain Residue Scorea Scoreb 

A Trp322 1.46 0.25 

A Leu326 0.60 0.14 

a His178 1.64 0.26 

a His179 0.52 0.18 

Scorea – Score based on conformation 

Scoreb – Score based on biochemical properties 

 

The residue Arg70 (Figure 2A), present in the eNOS structure, interacts 

with two residues of the p53 polypeptide chain, while Arg280 (Figure 

2F) interacts with two other residues. The Arg side chain is amphipathic 

and the amino acid is usually found on the surface of proteins, with its 

hydrophilic part interacting with other polar residues of partner proteins 

or interacting with the environment surrounding it [71]. The residues Gln 
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476 (Figure 1B), Asp478 (Figure 1C) and Trp480 (Figure 1D) are 

present in the p53 structure and they contribute significantly to the 

stability of the complex, binding to residues from the eNOS chain within 

the interface of interaction. Finally, His178 belong to a cluster of hot 

spots on the eNOS structure and significantly contribute to the free-

energy of the binding proteins, which is clearly important for the 

biological function of the complex [72, 73]. 

 

Table 4: Hotspot residues that significantly contribute to the free-energy 

of binding through Van Der Waals-favored coefficients of energy  

Chain Residue Scorea Scoreb 

B Trp322 0.47 0.10 

a Asn 239 0.67 0.06 

a Arg280 0.52 0.04 

Scorea – Score based on conformation 

Scoreb – Score based on biochemical properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Hot spots prediction for balanced coefficients model of eNOS 

and p53 interaction.  

 

All figures presented here show polar interactions for the amino acid 

residues classified as hot spots (Table 1). A – Arg70; B – Glu476; C – 

Asp478; D – Trp480; E – His178; F – Arg280. Blue: eNOS; red: p53; 

yellow: hot spot residues. 

 

Figure 3 shows the hot spots prediction for the electrostatic-favored 

model of interaction between eNOS and p53. Interestingly, more Arg 

residues (Figure 3A, D, E and I) participate in polar interactions in the 

interface between the proteins target of the present approach. Arg 

residues have been shown to contribute significantly to the binding of 

toxin proteins and ion channel proteins through electrostatic forces and 

they can act as electrostatic adhesive forces among biomolecules [74, 

75]. Here, Arg hot spot residues develop polar interactions with neighbor 

amino acids from the same polypeptide chain and with amino acids from 

the polypeptide chain of the interacting protein. Thus, it greatly 

influences the conformation stability of the eNOS-p53 complex. 

 

The other amino acid residues that contribute to the free-energy of 

binding through the electrostatic-favored coefficient are Gln476, 

Trp480, His178 and His 179. The former has been related to play 

important roles on the intermolecular association and aggregation of 

proteins through polar bonds [76]. In addition, Gln influences formation 

of macromolecular complexes formed by proteins and RNAs [77]. Trp 

has also been identified as an important component of protein-ligand 

interfaces, playing anchoring roles among structural binding proteins 

and stabilizing binding sites of proteins [78, 79]. The latter residues in 

this hot spot cluster, His178 and His179, have multiple roles in the 

molecular interactions due to the properties showed by the structure of 

histidine. Special interest is directed to His residues duet to its ability of 

modulating electrostatic interactions of charged residues. A feature that 

is promising for the regulation of the stability of protein complex and the 

design of modulating small organic molecules in therapeutics 

approaches [80, 81]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Hot spots prediction for the electrostatic-favored coefficients 

model of eNOS and p53 interaction.  

All figures presented here show polar interactions for the amino acid 

residues predicted as hot spots within the interface of interaction of the 

proteins under study (Table 2). A – Arg474; B – Gln476; C – Trp480; D 

– Arg70; E – Arg175; F – His178; G – His179; H – Arg181. Blue: eNOS; 

red: p53; yellow: hot spot residues. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Hot spots prediction for the hydrophobic-favored coefficients 

model of eNOS and p53 interaction.  
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All figures presented here show polar interactions for the amino acid 

residues predicted as hot spots within the interface of interaction of the 

proteins under study (Table 3). A – Trp322; B – Leu326; C – His178. 

Blue: eNOS; red: p53; yellow: hot spot residues. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Hot spots prediction for the Van der Waals-favored coefficient 

model of eNOS and p53 interaction.  

All figures presented here show polar interactions for the amino acid 

residues predicted as hot spots within the interface of interaction of the 

proteins under study (Table 3). A – Trp322; B – Asn239; C – Arg280. 

Blue: eNOS; red: p53; yellow: hot spot residues. 

 

We identified three important hot spot residues that contribute to the 

free-energy of binding in the eNOS-p53 complex regarding the 

hydrophobic-favored coefficient (Table 3). Trp residues and their 

interactions with neighbor residues drive the protein complex folding 

due to its hydrophobic nature and tendency to be located inside the 

protein structure [82]. 

 

Figure 4A shows a Trp hot spot residue on the eNOS polypeptide chain, 

its structure does not project into the interface of interaction, it is rather 

buried within eNOS structure.  Even so, it is able to establish polar 

interactions with a residue from the p53 polypeptide chain and contribute 

to the free-energy of binding of the complex. The Trp residue interact 

with intra-chain residues and contribute to the stability of the 

conformation of eNOS structure as it binds to p53. In addition, Trp 

residues have been related to influence refolding and stability of beta‐

sheets [83, 84]. Here, Trp 322 belongs to a beta‐sheet chain and we 

hypothesize that it drives the conformation of eNOS differently when the 

protein is bind or free from the p53 partner. Polymorphic Trp 322 has 

significant clinical relevance (dbSNP short genetic variations) as it may 

increase susceptibility to diseases, such as atherosclerosis and cancer, 

due to differences in eNOS and eNOS-p53 folding and refolding 

mechanisms. 

 

Figure 4B shows a hydrophobic Leu residue interacting with 

neighboring residues within the interface of interaction and contributing 

to the stability of the complex. It has been show that Leu residues and 

other hydrophobic residues (such as Trp) largely contribute to the 

stability of protein complex through polar interaction within interfaces, 

a feature also shared by Hys residues [80, 81, 85, 86]. Figure 4C shows 

a residue of His in a hot spot cluster interacting with residues located in 

intra and inter polypeptide chains in the interface of interaction of eNOS 

and p53. 

 

Van de Waals force are weak, individually, but they greatly contribute 

to the free-energy of binding when the whole structure of the interface 

of interaction is taken into account [87]. Out approach predicted three 

amino acid residues within the eNOS-p53 interface of interaction (Table 

4). Trp and other sulfur-containing amino acids govern complex 

stabilization through Van der Waals interaction and hydrogen bonding 

in certain proteins [88]. Asn residues have been shown to contribute to 

the interface of interaction in an antigen-antibody complex and to drive 

amide orientation through interaction with other neighboring amino 

acids [89, 90]. Finally, Arg residues contribute to nucleosome structure 

due to Van der Waals forces between histones and DNA [91]. Here, these 

amino acids (Trp, Asn and Arg) contribute significantly for the stability 

of the eNOS-p53 complex (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Interface of interaction, hot spots and rationally designed 

modulating peptides for the eNOS-p53 models of interaction.  

A – Interface of interaction between eNOS and p53 for a balanced 

coefficient of energy. B – Peptide rationally designed to modulate the 

eNOS-p53 mode of interaction based on balanced coefficients. C – 

Interface of interaction for the electrostatic-favored coefficient. D – 

Peptide rationally designed based on the electrostatic-favored 

coefficient. E – Interface of interaction for the hydrophobic-favored 

coefficient. F – Peptide rationally designed based on the hydrophobic-

favored coefficient. G – Interface of interaction for the Van der Waals-

favored coefficient. H – Peptide rationally designed action based on the 

Van der Waals-favored coefficient 

 

Based on the predicted hot spots and the interface of interaction between 

the complex formed by eNOS and p53 according to specific energy 

coefficients, we rationally designed modulating peptides for each model 

(Figure 6). To our knowledge, no study aimed at the design of small 

molecules for the interaction of such proteins, although several other 

studies have been trying to find efficient designed peptides that could 

modulate eNOS and p53 activities individually or when interacting with 

other target proteins [92, 93]. 

 

Figure 6A shows the surface of the eNOS protein, the hot spots residues 

within the interface of interaction and a secondary structure of p53 

monomer representation in order to highlight how they interact 
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according to balanced coefficients of energy. Figure 6B shows the 

designed peptide (the sequence of the peptides is not shown) anchored 

on eNOS surface. Regarding electrostatic-favored forces clusters of hot 

spot residues on the p53 surface form loops that fit in clefts present on 

the surface of eNOS (Figure 6C). Although the predicted complex 

structure and interface of interaction between eNOS and p53 are very 

similar for the balanced coefficients and the electrostatic-favored 

coefficient, the peptide designed for the latter is rather smaller, but with 

an energy score similar to the former (Figure 6D). 

 

The prediction of the interface of interaction for the hydrophobic-

favored and Van der Waals-favored coefficients was in a quite different 

region of the eNOS protein when compared to the other coefficients. A 

smaller interface of interaction was identified (Figure 6E and G) as the 

best score and a smaller number of hot spots was found for the 

hydrophobic-favored and Van der Waals-favored (Tables 3 and 4). 

Figures 6F and H shows the rationally designed peptides for the latter 

coefficients, respectively. Interestingly, the structure of the peptide 

predicted for the Van der Waals coefficient is a beta-sheet and fits 

perfectly in a cleft present on the eNOS surface. 

 

Concluding Remarks 

 

Cardiovascular diseases are the leading cause of deaths worldwide. 

Genetic and environmental factors increase the susceptibility to such 

diseases. Recently, research has focused on the prediction of proteins 

structure, interaction and other properties that could enhance diagnostic 

and therapeutic procedures. Bioinformatic tools have become a promisor 

way to achieve such goals and several different approaches have been 

proposed with promising results. Here, we used an in-silico approach to 

predict four models of interaction between clinically important proteins 

(eNOS and p53), to predict the interface of interaction and to rationally 

design modulating peptides to be tested in vitro and in vivo and possibly 

used as a therapeutic agent. 

 

A – Interface of interaction between eNOS and p53 for a balanced 

coefficient of energy. B – Peptide rationally designed to modulate the 

eNOS-p53 mode of interaction based on balanced coefficients. C – 

Interface of interaction for the electrostatic-favored coefficient. D – 

Peptide rationally designed based on the electrostatic-favored 

coefficient. E – Interface of interaction for the hydrophobic-favored 

coefficient. F – Peptide rationally designed based on the hydrophobic-

favored coefficient. G – Interface of interaction for the Van der Waals-

favored coefficient. H – Peptide rationally designed action based on the 

Van der Waals-favored coefficient 
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