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A B S T R A C T 

 

Introduction 

 

Following the recent discovery of functional, metabolically active brown 

adipose tissue (BAT) in humans, interest lies in elucidating the 

mechanisms underlying the BAT mediated non-shivering thermogenic 

(NST) component of the physiological response to acute cold [9, 10, 28, 

29, 30]. It is well established that cold-induced activation of uncoupling 

protein (UCP)1 on the inner mitochondrial membrane of thermogenic 

brown adipocytes uncouples oxidative phosphorylation from the 

generation of ATP, and that the excess chemical energy is dissipated as 

heat [6]. As a result, fat depots containing an abundance of thermogenic 

UCP1 containing adipocytes generate heat and expend energy [3, 11]. It 

is estimated that cold-induced BAT activation could increase resting 

energy expenditure by at least 2.5-5% [27]. The most superficial 

thermogenic BAT depot in humans is found in the neck and upper thorax 

[9], and supraclavicular skin temperature has been used in conjunction 

with varying cold stimuli (e.g.: localised chest cooling, personalised 

whole body cooling protocols designed to achieve maximal NST) as a 

proxy measure of thermogenesis [15, 14 ,5, 16]. As a highly metabolic 

tissue, BAT has a high glucose requirement, and radio-labelled glucose 
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uptake is often used as an indicator of BAT activity. 18F-

fluorodeoxyglucose (FDG) positron emission tomography (PET) is 

frequently used for clinical purposes, and warming patients prior to 

scanning is recommended to reduce FDG uptake in BAT (which may 

obscure the region of clinical interest [26]. Retrospective studies of 

clinically indicated FDG-PET scans have identified that BAT is less 

frequently observed in individuals who have been subject to a range of 

pre-warming procedures and, prospective BAT dedicated studies 

confirm an acute BAT response to both warming and cooling [8, 25, 17, 

31].  

 

Furthermore, the primary substrates of BAT are lipids, and UCP1 

activation is fatty acid-dependent [4]. Glucose uptake is, therefore, a 

crude measure of BAT activity, and when quantified as standard uptake 

values (SUV) on static FDG-PET-CT (e.g. SUVmean, SUVmax) may 

be considered semi-quantitative at best [20]. Importantly, these measures 

do not quantify thermogenic output. How exposure to warm ambient 

conditions before exposure to a cold stimulus affects the subsequent heat 

production from BAT, has not been explored. In this study, we used 

direct measurements of supraclavicular skin temperature to investigate 

the basal activity and cold-induced thermogenic response of 

supraclavicular brown adipose tissue (BAT) under warm (23˚C) and cool 

(18˚C) ambient conditions. We hypothesised that the basal activity of 

BAT would be lowest under warm conditions and that the response to 

mild cold exposure would, therefore, be greater.  

 

Methods 

 

The study was undertaken following the University of Nottingham 

School of Medicine Ethics Committee approval (Reference no: 

D052011) during the months of October and November. All participants 

gave written informed consent to take part, and the study conformed to 

the standards set by the Declaration of Helsinki 2008, in place at the 

time.  

 

I Participants 

 

Five healthy non-obese male volunteers aged 18-36 years with a mean 

body mass index of 24 ± 0.75kg/m2, fat mass of 17.1 ± 2.2kg and fat free 

mass of 67.4 ± 4.2kg took part. Each attended twice after an overnight 

fast (from midnight). Visits were on separate days and were allocated in 

random order. Experiments were conducted in a quiet, temperature-

controlled laboratory with participants in a semi-reclined supine 

position. Participants wore standardised clothing consisting of a cotton 

short sleeved shirt, long cotton trousers and socks (0.35 clo). Participants 

were asked to avoid alcohol and strenuous exercise in the preceding 24 

hours.  Participants with any condition, disease or drug known to affect 

metabolic rate or BAT activity were excluded. Height was measured 

using a stadiometer to the nearest 0.1cm (Leicester height measure; 

Child Growth Foundation, Sutton Coldfield, United Kingdom) weight 

was measured to the nearest 0.1 kg using calibrated portable digital 

scales, and body composition was determined using bioelectrical 

impedance using a hand to foot, single-frequency (50 kHz) battery-

operated bioimpedance analyser (BIM4; Impedimed P/L, Capalaba, 

Austria).   

 

II Cooling protocol 

 

Participants attended the laboratory on two mornings, and the cooling 

protocol was undertaken at room temperatures of 18˚C and 23˚C. 

Measurements commenced after a minimum of 45 minutes’ stabilisation 

to the room temperature. After a 15 minute basal period, the left hand 

was immersed in a 9L bucket of cool water (20˚C) to the level of the 

ulnar styloid process. Water temperature was checked every 5 minutes, 

ice water added if it had risen by more than 0.2˚C until temperature was 

restored to 20˚C, and equal volumes of water removed to maintain the 

water depth to the level of the ulnar styloid process.  

 

III Energy expenditure 

 

Indirect calorimetry was performed during baseline and single-hand 

immersion in cool water. Continuous recordings of oxygen consumption 

and carbon dioxide production were made using a mask collection 

method (Oro-nasal reusable face mask, V7450 series, Hans Rudolph 

Inc., Shawnee, USA) with the Europa gas exchange monitor (GEM; 

Europa Scientific Ltd., Crewe, UK). Resting energy expenditure (REE) 

was recorded for 30 minutes before, and during, the 30 minutes hand 

cooling period. Average values for REE during baseline and the 30 

minute hand cooling period were calculated from the last 15 minutes of 

each period.  

 

IV Infrared thermography 

 

Supraclavicular skin temperature was measured using infrared 

thermography (FLIR B425, thermal resolution 320x240 pixels; FLIR 

Systems, Danderyd, Sweden) as described previously and used as an 

indicator of BAT activity [21, 22, 24]. In brief, the camera was 

positioned so that the lens was perpendicular to the larynx and the field 

of view included, as a minimum, the full width of the shoulders laterally, 

the manubriosternal joint inferiorly and angle of the mandible superiorly. 

The distance from the camera required to achieve this was measured and 

entered alongside ambient and reflective temperatures into the thermal 

camera during setup as per the manufacturer’s instructions. Images were 

taken at 1 minute intervals during baseline and cooling. During 

thermographic image analysis, a region of interest (ROI) was defined as 

that bounded by the left sternocleidomastoid muscle, clavicle and lateral 

contour of the neck using ThermaCAM Researcher Pro 2.10 (FLIR 

systems AB, Taby, Sweden) as described previously [22, 21]. ROIs were 

exported into Excel (Microsoft, Redmond, WA, USA) and a custom 

written script in R (A Language and Environment for Statistical 

Computing, version 3.4.3 (R Core Team)) was used to calculate the 

87.5th percentile temperature value (TSCR).  

 

V Mean skin temperature  

 

Mean skin temperature (TMSK) was evaluated using measurements of 

skin temperature obtained from wireless data loggers (iButton, model 

no. DS1219H-F50, resolution 0.125˚C; Maxim, Sunnyvale, CA, USA) 

placed at seven body sites (i.e. forehead, trunk, arm, hand, lower leg, 

thigh and foot) and calculated using the Hardy Du Bois formula [13]. 

Measurements were taken at 1 minute intervals throughout, in parallel to 

the acquisition of thermograms as described above.   

 

VI Statistical analysis 

 

All analyses were performed using GraphPad Prism for Windows 
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Version 7 (GraphPad Software, La Jolla California USA). Data are 

reported as means ± SEM unless otherwise stated. All data were 

normally distributed as indicated by the Kolmogorov-Smirnov normality 

test. Comparison between baseline and 30 minute energy expenditure 

and skin temperature of the thigh was made using a two-tailed paired t-

test. A two-way repeated measures ANOVA was used to determine 

whether any interaction was present between cold stimulation and 

ambient room temperature. Where ANOVA analysis revealed a 

significant F-ratio for the interaction, a post-hoc paired two-tailed t-test 

was employed to define the simple effect of cold stimulation at each 

ambient room temperature. A P value < 0.05 was considered to be 

statistically significant; where comparisons were made at both 18˚C and 

23˚C, this threshold was adjusted (using a simple Bonferroni correction) 

to < 0.025.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Effect of single-hand immersion in cool water on 

supraclavicular temperature at 18˚C and 23˚C ambient room temperature 

A significant interaction was observed between ambient temperature and 

thermogenic response to hand cooling (F (1, 4) = 12.22, P = 0.025), ** 

P < 0.01 following 30 minutes of hand cooling (open circle) compared 

with baseline (circle); n = 5. TSCR – supraclavicular skin temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Change in resting energy expenditure after 30 minutes hand 

cooling at 18˚C and 23˚C 

*** P < 0.001 when compared to baseline, n = 5. EE – energy 

expenditure; TSCR – supraclavicular skin temperature 

 

Results and Discussion 

 

TSCR increased following single-hand immersion in cool water at an 

ambient room temperature of 23˚C (Figure 1). This was accompanied by 

a small, statistically significant increase in REE from baseline (baseline 

EE: 4.76 ± 0.30 kJ/min, ∆EE: 0.22 ± 0.02 kJ/min, P = 0.0008) (Figure 

2). Neither change was observed in the same group of participants 

examined at a room temperature of 18˚C. In contrast, skin temperature 

measurements taken over a central location not overlying BAT (i.e. 

thigh) remained static at 23˚C (Figure 3), suggesting that this rise in 

temperature was localised to BAT, rather than secondary to a wider 

systemic thermogenic response.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Skin temperature of the anterior thigh and supraclavicular 

region prior to and following 30 minutes’ hand cooling at 23˚C 

** P < 0.01 when compared to baseline, n = 5. Closed circles = baseline, 

open circles = 30 minutes cooling 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Time course of changes in mean skin temperature after 30 

minutes hand cooling at an ambient room temperature of 18˚C and 23˚C 

Closed squares = ambient temperature 23˚C, and open squares = ambient 

temperature 18˚C, n = 5. TMSK – mean skin temperature 

 

Consistent with the well-described insulative response to acute cold 

exposure, TMSK fell from baseline throughout the duration of cooling [7]. 

The degree and pattern of this fall was remarkably similar at both 

ambient room temperatures (Figure 4), suggesting that at both 18˚C and 

23˚C hand immersion in cool water acts as an effective cold stimulus of 

similar magnitude. Skin temperature was, as expected lower at all sites 

when measured at 18˚C. Moreover, the skin temperature of the non-

immersed hand was well above ambient temperature during baseline at 

18˚C (mean: 28.01˚C, 95% CI 23.33 to 32.70˚C) and dropped 

significantly (-0.61˚C, 95% CI -0.93 to -0.29˚C) following immersion of 

the left hand in water at 20˚C.  This is consistent with the recognised 

vasoconstrictor response of the contralateral hand to indirect cooling, 

further supporting the efficacy of the cold stimulus at a cooler room 

temperature [19]. However, the extent to which vasoconstriction within 

the hand and fingers at 18˚C prior to immersion in water may have 

attenuated subsequent heat extraction is not certain.  

 

The supraclavicular BAT response to acute localised cold exposure 

under varying ambient conditions has not been reported before. 

However, the outcomes of a recent study in a similar study cohort of 
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non-obese males at 22-23˚C support our findings [1]. In that study, acute 

mild cold exposure prior to the onset of significant involuntary 

superficial muscle activity (i.e. shivering) resulted in a similar increase 

in energy expenditure and a similar pattern of reduction in mean skin 

temperature. However, supraclavicular temperature measured using a 

single iButton placed within the “supraclavicular zone” rather than with 

thermography was unchanged throughout [1]. Gashi et al (2018) also 

reported an isolated increase in TSCR during cooling in contrast to a fall 

in skin temperature at 7 other sites, in addition they identified a 

significant positive linear relationship between ∆TSCR and cold induced 

thermogenesis [12].  

 

Ambient temperature is a determinant of FDG-detected BAT prevalence, 

and acute cold exposure has been shown to increase BAT activity on 

PET-CT [23, 25, 31]. Our findings are in line with this but are the first 

to show a differential effect of ambient temperature on supraclavicular 

heat production using thermography in response to cold stimulation, 

which suggests that supraclavicular BAT can be activated with minimal 

cold exposure. The REE and TSCR response observed at 23˚C may have 

been even greater had we also examined our subjects under confirmed 

thermoneutral conditions. One explanation for our findings is that BAT 

at a room temperature of 18˚C is already close to its maximal activity. 

However, REE at baseline was similar at 18˚C and 23˚C (4.76 ± 0.30 

kJ/min and 4.88 ± 0.35 kJ/min respectively), indicating that the overall 

increase in REE may not be maintained long term. This may reflect a 

compensatory reduction in energy expenditure from another component 

of REE or may indicate that cold-induced BAT activation is transient. 

 

Maximising BAT activity by increasing time spent outside of 

thermoneutrality presents an attractive mechanism for enhancing 

lipid/glucose metabolism, particularly in the context of diabetes, obesity 

and their metabolic sequelae. Although the changes in energy 

expenditure seen following cold stimulation in our study group were 

small (c. 3-5.5% of baseline REE), if these were sustained over a long 

period they could contribute significantly to energy balance. For 

example, assuming that 1 kg of body fat contains 37,000 kJ and a prior 

neutral energy balance, an increase in EE of 0.22 kJ/min for just 50% of 

each day would increase daily energy expenditure by 160 kJ, which, if 

accumulated as WAT over a single year, would equate to around 1.5 kg.  

 

As a pilot study, our main limitation was small sample size. Nonetheless, 

the magnitude of the response to the mild cool stimulus at 23˚C was 

sufficient to reach statistical significance.  How these findings may relate 

to a larger, more diverse population is unclear and will only be identified 

by further, more comprehensive studies. Although we did not observe 

shivering, nor did our subjects report it, EMG measurements would have 

enabled us to rule out subclinical muscular contraction as the cause for 

the increase in energy expenditure observed in our subjects.  Evidence is 

also emerging from rodent studies for non-UCP1 dependent mechanisms 

of NST originating from muscle, whereby mitochondrial proton leak 

may be generated through UCP3 (although the role for UCP3 in humans 

is considered controversial), increased consumption of ATP via creatine 

cycling, or thermogenesis achieved via sarcolipin-mediated calcium 

cycling [2, 18].  

 

Supraclavicular thermography measures infrared radiation from the skin 

surface, this is determined not only by the heat produced from the deeper 

structures such as BAT but also by an overlying “insulative layer” 

consisting of the skin, subcutaneous adipose tissue and also a dynamic 

cutaneous vasculature network.  At present there are no methods to 

control for this, however, given that cold induced changes in 

supraclavicular temperature closely approximate to FDG uptake on 

PET-CT, and also to changes in energy expenditure we speculate that 

these effects are minimal [12, 14, 15,16]. As chemical-shift water-fat 

MRI becomes more available for the assessment of BAT, large scale 

studies in conjunction with perfusion assessment may enable the 

thermographic evaluation of BAT to be refined.    

 

Conclusion 

 

Our initial findings show that supraclavicular BAT can be activated 

under warm conditions by a very mild cold stimulus, generating heat in 

association with an increase in energy expenditure, and that 

supraclavicular BAT may be maximally stimulated at an ambient room 

temperature of c.18˚C. Whether sustained activation of BAT occurs at 

lower ambient temperatures under free-living conditions, and whether 

this can directly impact on overall energy balance, is unknown but 

presents an exciting avenue for further study. 
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