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A B S T R A C T 

 

Introduction 

 

There has been an increase in the amount of digital information stored in 

electronic health records associated with each patient encounter [1]. 

Typically, outcomes have been associated with data at one time point. 

To improve on this, we looked at a patient’s hospital surgical course over 

several time points, reflecting an ongoing clinical picture. 

Administrative data (such as age, gender, and race) provides a starting 

point [2]. With major elective surgeries, more information is available 

preoperatively. Two common comorbidity scores adjusting preoperative 

risk, beneficial in predicting 30-day complications in surgical patients 

are the Charlson Comorbidity Index (CCI) and the American Society of 

Anesthesiology Physical Status (ASA-PS) [3-11]. Together, the CCI and 

ASA-PS have shown to be useful in predicting complications [12, 13].  

 

The Surgical Apgar Score (SAS) was developed and validated as a 

simple objective assessment of a patient’s postoperative condition and 

has been shown to correlate with adverse outcomes [14-18]. The 

postoperative destination [home, hospital ward or Intensive Care Unit 

(ICU)] is usually determined preoperatively and has not been well 

studied as a possible risk factor for outcomes. Furthermore, delayed ICU 

admission indicates an increased level of care is needed and could be 
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inferred to be associated with poor outcomes. Numerous other 

specialized and general scores have been developed that predict 

morbidity and mortality at varying points in the future for different 

subsets of patients.  

 

We developed a Cumulative Perioperative Model (CPM) that 

incorporates patient information available as the patient received 

perioperative care. The CPM predicts 30 and 90-day mortality in cancer 

patients undergoing abdominal surgery. We follow the patients 

throughout their clinical course and update the prediction at each logical 

time step. We use cumulative, easily calculated features based on 

available knowledge to predict mortality. We compared our model’s 

predictive ability to single time point alternatives: the CCI, the SAS, the 

ASA-PS, the Elixhauser measure, Quan’s CCI and Elixhauser variants, 

the Risk Stratification Index (RSI), the Risk Quantification Index (RQI), 

Le Manach’s Perioperative Score to Predict Postoperative Mortality 

(POSPOM), and the Surgical Mortality Probability Model (S-MPM) [3, 

7, 14, 19-25]. 

 

Methods 

 

Both the University of Texas MD Anderson Cancer Center and Rice 

University Institutional Review Boards approved this research and 

waived the need for informed patient consent. 

 

I Study Population 

 

This research was based on 81,196 surgical patients treated at MD 

Anderson between January 2007 and March 2014. MD Anderson is a 

Comprehensive Cancer Center located in Houston, Texas. We studied 

adult patients undergoing major abdominal surgery, including all major 

procedures below the diaphragm and above the pelvic floor, whether 

intraperitoneal or extraperitoneal. 2,791 cases involved multiple 

procedures. Our data sources were administrative billing and procedure 

codes as well as surgical data from the Anesthesia Information 

Management System and the hospital's nightly census. 

 

II Study Design 

 

We built models of 30- and 90-day mortality for cancer patients 

undergoing major abdominal surgery that improves in predictive ability 

over time as we learn more about each patient. We started with 

demographic information and added features as the patient arrived for 

surgery and progressed through the operating theater and perioperative 

stay until the sixth postoperative day. At each point, we added the newly 

available features to the cumulative model and re-predicted. Figure 1 

shows the points of interest around the perioperative period. In this 

diagram, for example, a patient arrived from home on the morning of 

surgery (1), had the operation (2), recovered for a few hours in the PACU 

(3), and then was admitted to a ward for further recovery and observation 

(4). One week later, the patient returned home (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Relevant perioperative patient course through the hospital. 

Shaded boxes are starting locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Destinations and quantities of abdominal surgery patients who started at home. The bottom row shows the patients' 30-day location. 
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We considered four different starting points for the cases, as shown in 

(Figure 1). These locations include arrivals from home or via the 

emergency center and two inpatient locations, the ICU and the hospital 

ward. From these starting points, the patients proceeded to the operating 

room, and then either returned immediately to surgery, were sent to the 

ICU, went to the PACU or were sent to the morgue. In our dataset, only 

one patient died during surgery. Figure 2 shows the number of patients 

who started at home on the day of surgery, the patients' surgical 

destination and 30 (90)-day status. The supplemental material includes 

analogous diagrams starting from the Emergency Center, hospital ward 

and ICU. 

 

III Incremental Steps and Features 

 

Rather than rely on a single time point, we evaluated patients as they 

went through the “process of care” and leveraged that information to 

build a cumulative perioperative model to identify patients with higher 

mortality risk. The time points during the patient’s clinical course were 

as follows: 

i. When surgery is scheduled 

ii. The morning of surgery 

iii. When the procedures are complete 

iv. When anesthesia is complete 

v. After leaving the PACU 

vi. Six days postoperative  

 

We considered a number of patient demographic and case data for our 

predictive model, as listed in (Table 1). We determined procedures 

performed from CPT codes recorded in the electronic health record and 

comorbidities from ICD-9 codes.

 

Table 1: Major Abdominal Surgery patient characteristics. 

Characteristic Training Evaluation Total 

Number of cases 9,251 4,626 13,877 

30-day mortalities # / % 69 / 0.75% 37 / 0.80% 106 / 0.76% 

90-day mortalities # / % 204 / 2.21% 86 / 1.86% 290 / 2.09% 

Age, median (IQR), years 59.9(43.4, 63.8) 59.8(43.3, 63.9) 59.9(43.3, 63.8) 

Male gender, % 45 47 46 

Race/ethnicity, %    

White 73.2 73.4 73.3 

Black 7.8 7.9 7.9 

Hispanic 13.2 13.1 13.2 

Other 5.8 5.6 5.7 

BMI    

< 18.5 1.4% 1.6% 1.4% 

>= 18.5, < 25 26.4% 26.7% 26.5% 

>= 25, < 30 34.0% 33.0% 33.6% 

>= 30, < 35 21.4% 22.6% 21.8% 

>= 35, < 40 9.4% 9.3% 9.4% 

> 40 7.4% 6.9% 7.2% 

Charlson Index, median (IQR) 5 (2,8) 5 (2,8) 5 (2,8) 

Start Location, %    

Home 94.3 94.7 94.5 

Ward 5.0 4.6 4.9 

EC 0.5 0.4 0.5 

ICU 0.2 0.3 0.2 

Emergency Status, % 1.1 1.0 1.1 

ASA Score, median, (IQR) 3 (1,3) 3 (1,3) 3 (1,3) 

Scheduled admit type %    

Out-patient 1.5 1.8 1.6 

Observation Unit 1.3 1.4 1.4 

Same Day Admit 91.9 91.7 91.8 

In-patient 5.2 5.0 5.1 

Unknown 0.1 0 0.1 

Presurgical LOS, median (IQR), years 0 (0,0) 0 (0,0) 0 (0,0) 

Procedures, # / % of total procedures    

Nephrectomy 2,024 1,009 3,033 / 19.4% 

Colectomy 2,000 938 2,938 / 18.8% 

Hysterectomy 1,644 781 2,425 / 15.5% 
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Hepatectomy 1,088 539 1,627 / 10.4% 

Cystectomy 862 455 1,317 / 8.4% 

Pancreatectomy 676 331 1,007 / 6.5% 

Enterectomy 501 259 760 / 4.9% 

Oophorectomy 394 207 601 / 3.9% 

Splenectomy 260 119 379 / 2.4% 

Jejunostomy 208 129 337 / 2.2% 

Enterostomy 201 120 321 / 2.1% 

Adrenalectomy 211 99 310 / 2.0% 

Gastrectomy 190 95 290 / 1.9% 

Pelvic exenteration 100 70 170 / 1.1% 

Enteroenterostomy 56 32 88 / 0.6% 

Surgical Apgar score, median (IQR) 7 (5,7) 7 (5,7) 7 (5,7) 

Extended PACU stay, % 6.4 6.0 6.3 

Patient Location on Day 7    

Home 5024 2507 7531 / 54.3% 

Home Care 193 90 283 / 2.0%  

Institutional Care 14 6 20 / 0.1% 

PACU 9 3 12 / 0.1% 

Hospital Ward 3833 1915 5748 / 41.4% 

ICU 166 97 263 / 1.9% 

Hospice 0 0 0 / 0 % 

Morgue 12 8 20 / 0.1% 

Post-operative Length of stay, median (days) 7.7 7.6 7.7 

 

At the time surgery is scheduled, we know the patient's age, gender, race, 

comorbidities and the scheduled procedure. To reflect each patient's 

comorbidities, we used the CCI [3]. The CCI is a weighted sum of 19 

key comorbidities, each assigned a weight of 1, 2, 3 or 6 [3]. For 

consistency, we use Deyo's mapping of the comorbidities to ICD-9 codes 

[26]. By the morning of surgery, we know the patient's ASA-PS 

classification, whether or not the surgery is emergent, and where the 

patient was prior to surgery (home, on an inpatient ward, in the ICU, or 

in the emergency center).  

 

We took two steps to model what occurred in the operating room. First, 

we looked at which abdominal procedures were performed, and once 

anesthesia ended, we included the patient's SAS. Next, we incorporated 

the patient's surgical destination (discharge, inpatient ward, ICU, return 

to surgery). Finally, we looked forward to six days to identify the 

patient’s location (home, ICU, institutional care, etc.). We discarded 

features that either had no discrimination (e.g., whether or not the patient 

had a splenectomy) or if the feature did not improve the C-statistic for 

the step (e.g., extended PACU stays). 

 

IV Outcome Measures 

 

We evaluated our model's ability to predict 30 and 90-day mortality 

using the C-statistic, or area under the receiver operating characteristic 

curve (AUROC). This metric reflects a model's discriminative ability, 

with a value of 0.5 equivalent to a random or coin-flip classifier, and a 

value of 1 indicating a perfect ability to segregate positive cases from 

negative. Mortality was determined either by discharge status within 30 

(90) days or by records indicating the date of last contact and status. In 

addition, the presence of any patient information past 30 (90) days 

postoperative, indicated survival.  

V Comparisons with Other Predicting Models 

 

We implemented the time point assessment scores as described in their 

respective papers, with a few exceptions. Since we did not have access 

to the planned surgical procedures, we used the actual procedure 

performed in the POSPOM model. With regard to the S-MPM model, 

not all of the procedures in our study were included in the S-MPM 

model. Therefore, we assigned the missing procedures to high, 

intermediate, or low risk categories based on our medical expertise and 

judgment. We also changed the categorization of pelvic exenteration 

from low-risk (all gynecologic procedures) to high-risk, based on how 

this procedure is performed at MD Anderson. We compared our models’ 

predictive ability to single time point alternatives: the CCI, the SAS, the 

ASA-PS, the Elixhauser measure, Quan’s CCI and Elixhauser variants, 

RQI, RSI, the POSPOM, and the S-MPM [3, 7, 14, 19-25].  

 

The RQI composite major morbidity/mortality risk estimate includes a 

Procedure Severity Score for mortality, ASA-PS, and hospitalization 

type (in or out-patient) [23]. To calculate the RQI in cases with multiple 

procedures, we selected the procedure with the highest weight. The Risk 

Stratification Index (RSI) uses procedure and diagnosis codes to predict 

a patient's hospital length of stay and mortality [22]. Both the RQI and 

the RSI predict 30-day mortality and cover a broad spectrum of patients 

and conditions. The S-MPM categorizes surgeries into three tiers based 

on risk and utilizes the ASA-PS and emergency status of the operation 

[25]. The S-MPM was developed using 298,772 patients undergoing 

noncardiac surgery from the National Surgical Quality Improvement 

Program (NSQIP). SAS, a 10-point score that predicts 30-day mortality 

and major surgical complications, was developed and validated on both 

colectomy and general and vascular procedures use estimated blood loss, 

lowest heart rate and lowest surgical mean arterial pressure [14]. 
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Combining available patient information prior to the procedure, Le 

Manach et al.’s POSPOM score uses demographics and comorbidities in 

conjunction with the surgery category [24]. While the POSPOM score 

was intended to predict in-hospital mortality, we used it to predict 30 and 

90-day mortality. 

 

VI Statistical Methods 

 

Two-thirds of the patients (9,251) were randomly assigned to the training 

cohort and the remaining (4,625) to evaluation. The predictive model 

was built using the training cohort and evaluated on the evaluation 

cohort. Our model is a multivariate logistic regression model. In the first 

step, we selected the demographic and comorbidity features that, 

combined, produced the highest C-statistic. Afterward, we added 

discriminative features by the time available, using forward feature 

selection, retaining any discriminating candidate feature that increased 

the C-statistic.  

 

Prior to computing the SAS, we removed outlier values from the vital 

sign data. We treated heart rates less than 40 beats per minute as artifact 

and calculated the mean blood pressure (MBP) from systolic (SBP) and 

diastolic (DBP) values. 

 

(𝑀𝐵𝑃 =  
1

3
𝑥(2 × 𝐷𝐵𝑃 + 𝑆𝐵𝑃)). 

 

We required the SBP to be at least 40 mmHg and the diastolic to be at 

least 28 mm Hg. Furthermore, we required a minimum 12-point 

difference between the two readings. In an effort to simplify the CPM 

and improve predictability, we also reduced the 10-point scale to the top 

six values. Our final values for the surgical Apgar score are less than 5, 

6, 7, 8, 9 and 10. Finally, at each time step, we remove all patients in the 

evaluation set that have died. We computed confidence intervals using 

standard error calculations, as proposed by Hanley and McNeil [27]. 

 

Results 

 

Overall, there was a 0.76% (2.09%) 30 (90)-day mortality rate for these 

cases. The patients' median SAS was 7, and 6% of patients were in the 

post-anesthesia care unit (PACU) overnight. Typical postoperative 

lengths of stay were 7.6 days, and 2% of patients were admitted to the 

ICU after first being in an inpatient ward. Patients were typically in their 

late sixties, with a fairly even mix of men and women. Over 98% of the 

cases were elective, with over 94% of the patients arriving from home 

the day of surgery. Approximately 5% of the patients were already 

inpatients, and a small number (~0.5%) arrived at surgery via the 

hospital emergency center. Table 1 shows our patients’ characteristics. 

Table 2 lists the exact feature values used in the models and the 

univariate C-statistic for each candidate feature. For the 30-day CPM 

model, the most significant independent predictors of outcome were the 

CCI (0.69), SAS (0.76), and surgical destination (0.72). 

 

Table 2: Discrete Feature Values used in the Cumulative Perioperative Model associated with each cumulative step and their univariate ability to predict 

mortality. 

Time step Feature Values 
C-statistic for 30-

day mortality 

Cumulative C-statistic 

for 30-day mortality 

C-statistic for 90-

day mortality 

Cumulative C-

statistic for 90-

day mortality 

1. Procedure 

Scheduled 
Gender {Female, Male} 0.56 -  0.56  - 

  Race 
{White, Black, 

Hispanic, Other} 
0.58  - 0.49 - 

  Age numeric 0.58 - 0.60 - 

  BMI 6 groups 0.46   0.55   

  

Charlson 

Comorbidity 

Index 

Discrete values 

from 0 - 20, 

inclusive 

0.69    0.69   

 Best step 1 

features 
Race + CCI    0.70 Gender + CCI  0.71  

2. Morning of 

surgery 
Start location 

{Home, Ward, 

ICU, EC} 
0.61   0.61   

  Emergency status {Absent, Present} 0.58   0.57   

  
ASA 

classification 

Numeric: 

{1,2,3,4,5} 
0.65   0.62   

  
Best step 1 & all 

step 2 features 
   0.76   0.78  

3. Procedures 

complete 
Adrenalectomy {Absent, Present} 0.49 Excluded  0.49 Excluded  

  Colectomy {Absent, Present} 0.48 Excluded  0.52   

  Cystectomy {Absent, Present} 0.54   0.53   

  Enterectomy {Absent, Present} 0.57   0.55   
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Enteroenterosto

my 
{Absent, Present} 0.51   0.52   

  Enterostomy {Absent, Present} 0.53   0.53   

  Gastrectomy {Absent, Present} 0.50 Excluded  0.49 
  

Excluded  

  Hepatectomy {Absent, Present} 0.48 Excluded  0.52   

  Hysterectomy {Absent, Present} 0.57   0.57   

  Jejunostomy {Absent, Present} 0.51   0.51   

  Nephrectomy {Absent, Present} 0.48  Excluded 0.51   

  Oophorectomy {Absent, Present}  0.50 Excluded 0.51   

  Pancreatectomy {Absent, Present} 0.52   0.51   

  
Pelvic 

exenteration 
{Absent, Present} 0.51   0.51   

 Splenectomy {Absent, Present} 0.50 Excluded 0.50 Excluded 

  

Best step 1, all 

step 2, & 

discriminative 

step 3 features 

  0.79    0.78 

4. Anesthesia 

complete 

Surgical Apgar 

score 
{≤5, 6, 7, 8, 9, 10} 0.76 0.84 0.70 0.82 

5. Post PACU Extended PACU {Absent, Present} 0.52 Excluded  0.52 Excluded  

 
Surgical 

destination 

{Discharge, Ward, 

ICU, Surgery} 
0.72 0.86 0.63 0.82 

6. Six days 

post-operative 

Delayed ICU 

admit 

{Home, Home 

Care, Institutional 

Care, PACU, 

Hospital Ward, 

ICU} 

0.56 0.87 0.53 0.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: C-statistic for the Cumulative Perioperative Model Predicting 30-Day Mortality, with Confidence Intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: C-statistic for the Cumulative Perioperative Model Predicting 90-Day Mortality, with Confidence Intervals.
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Figures 3 & 4 show the C-statistic for predicting (30 and 90-day) 

mortality generated by our model at each time step: when the case is 

scheduled; the morning of the surgery; after procedure completion; at 

anesthesia end; post PACU, and six days postoperatively. The 30-day C-

statistic starts with a value of 0.70 and increases, basically linearly, as 

time progresses, to a value of 0.87. 

 

Table 3 shows the results from the point-in-time models as well as the 

CPM model at each point in time. As can be seen, the C-statistic 

improves over time and outperforms the other models at each step. 

 

Table 3: Comparison of 30-day and 90-day mortality predictions by all 

models, in time order. 

Model 30-day Mortality 90-day Mortality 

1. Procedure Scheduled 

CPM 0.70 0.71 

CCI 0.69 0.69 

Quan CCI 0.71 0.68 

Elixhauser 0.71 0.73 

Quan Elixhauser 0.68 0.69 

2. Morning of surgery 

CPM 0.76 0.78 

ASA 0.65 0.62 

POSPOM 0.63 0.65 

3. Procedures complete 

CPM 0.79 0.78 

S-MPM 0.72 0.68 

RSI 0.58 0.67 

RQI 0.70 0.71 

4. Anesthesia complete 

CPM 0.84 0.82 

SAS 0.76 0.70 

 

Discussion 

 

In this study, we confirmed the hypothesis that by adding time-based 

features to a cumulative model, we are better able to predict 30 (90)-day 

mortality in cancer patients undergoing abdominal surgery. The 30-day 

mortality rate is only 0.80% in our evaluation set, which makes this 

prediction problem difficult. Given this prevalence, obtaining a C-

statistic of 0.70 (0.71) before surgery begins, 0.84 (0.82) after anesthesia, 

and 0.86 (0.82) post PACU is quite remarkable, especially considering 

the small and easily obtainable features required [28]. Additionally, the 

model performed well above the other ten other available models starting 

the morning of surgery and better than the other models postoperatively. 

 

A number of predictive scores have been developed specifically for the 

surgical population. Once the procedure is scheduled, comorbidity 

information is available, which may be used for computing mortality 

scores. The foremost comorbidity indexes are the CCI and the Elixhauser 

score [3, 20]. While originally developed for longer-term forecasts, the 

CCI is commonly used to assess a patient's mortality risk [29, 30]. Since 

their formation, numerous updates and variants of the CCI and 

Elixhauser scores have been implemented [26, 31-34]. We considered 

using the Elixhauser score measures in lieu of the CCI, as they are based 

on a larger population and frequently outperform the CCI [35-37]. 

However, the CCI is simpler to compute, as there are no rules to follow 

regarding which comorbidities to include. In addition, the CCI reduces 

the comorbidities to a single score instead of the up to 30 features used 

by the Elixhauser score [3, 20]. Instead, we compare the use of the 

Elixhauser score to predict 30 and 90-day mortality independently and 

compare this model with the CPM. The ASA-PS has been shown 

prospectively to strongly correlate with surgical outcomes, including 

mortality, with higher scores associated with higher incidences of poor 

outcomes [38].  

 

Using the CPM alone, we obtained a C-statistic of 0.87 for predicting 

30-day mortality, on par with the most predictive individual features in 

our model. Since the RQI uses the patient's primary procedure, it is most 

likely better suited to a patient population where only one procedure is 

performed at a time. In our cohort, over 20% of the cases had multiple 

procedures. Using the covariates provided by Sessler et al. (RSI), we 

calculated the C-statistic for in-hospital mortality (coefficients were not 

available for 30-day mortality) and obtained a C-statistic of 0.58 using 

our evaluation data. This value is significantly less predictive than using 

the CCI alone on our patients. While the RSI model is based on over 17 

million Medicare patients, it excludes patients younger than 65 and 

requires the use of many different codes, consisting of 187 regression 

coefficients. It performed reasonably well on our patient cohort but did 

not outperform key individual predictors.  

 

Both the RSI and RQI were designed for large, heterogeneous 

populations. They use a significant number of diagnosis and/or 

procedure codes, often with subtle differences and weights. Conversely, 

the CPM includes commonly available and easily computable patient 

information. For example, we require a simple Yes/No answer to 

whether or not one of six key procedures (represented by 36 CPT codes 

present in our dataset) was performed. The most complex calculations 

for the CPM are the CCI and the SAS. Patients in our cohort are very 

similar in terms of the feature values used by the RSI and RQI models, 

driving the need for a more specific model such as the CPM, which is 

better able to differentiate patients. 

 

The most important features contributing to poor prognosis in both 

models are starting in the EC or ICU, emergent status (90-day), and 

being in the ICU six days postoperatively (30-day). The most significant 

features indicating better prognosis are starting from home on the day of 

surgery and going to the hospital ward after surgery. These findings, 

while intuitive, enable earlier and more accurate predictions of outcomes 

based on specific patient characteristics within a cohort of similar 

patients. These model-based predictions can be the starting point for 

engaging the patient and families in the decision-making process during 

discussions about prognosis or progression of disease and could help 

physicians review and impact clinical courses and outcomes for similar 

patients. This risk assessment could be used at every step along the way 

to support clinical decisions or adjust the level of patient care and 

oversight.  

 

Our study does have limitations. It is retrospective and is a single-site 

study which limits the generalizability to other centers. Further, we may 

be missing information on follow-up care for some patients as MD 

Anderson often treats visiting patients. Missing follow-ups may result in 

inaccuracies in the mortality count. However, since the surgeries 
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considered are major, we expect a relatively high level of follow-up. In 

addition, many of the predictive models were not intended to predict 30- 

or 90-day mortality but were tuned to predict in-hospital mortality 

(POSPOM) or included significant morbidities as well. We did not 

address how the information might affect clinical decision making [39]. 

 

Finally, we are planning to further refine the model using more 

sophisticated techniques and additional features to increase the 

predictive ability sooner, providing earlier insight into patients at risk. 

There are additional features that we believe would add to the predictive 

power of this model, in particular, primary diagnosis and disease stage, 

to allow adjustments for cancer progression. Once the patient reaches the 

ICU, adding the APACHE and/or SOFA scores are likely to improve 

predictions. We would also like to incorporate the discharge destination 

and predict additional complications (e.g., acute coronary syndrome, 

stroke).  

 

Conclusion 

 

We have developed a cumulative perioperative model (CPM) that re-

evaluates a patient's state over time. This model increases in predictive 

capability as we follow patients through the hospital. The CPM 

demonstrates the value of using time-dependent information from the 

patient’s perioperative clinical course and could be used to identify 

patients who would benefit from different treatments or postoperative 

levels of monitoring. This tool enables an earlier assessment of patient 

risk, which could then be used as a decision support aid regarding care 

and treatment, potentially resulting in improved outcomes, decreased 

costs, and more informed decisions. 

 

Summary 

 

Prior to this research, the following was known: Single point in time risk 

scores can be used to predict a patient’s complication and/or mortality 

risk.  

 

This study added to our knowledge: Continuous models that incorporate 

additional information throughout a patient’s surgical course increase 

the ability to predict mortality risk for cancer patients undergoing 

abdominal surgery. 

 

Acknowledgements 

 

The authors would like to thank MD Anderson employee Georgia Lange 

MPH, who provided invaluable assistance in obtaining the source data. 

The study was supported in part by the National Institutes of Health 

through Cancer Center Support Grant P30CA016672. Risa Myers was 

supported in part by a training fellowship from the Keck Center of the 

Gulf Coast Consortia, on Rice University's NLM Training Program in 

Biomedical Informatics (grant number T15LM007093) and by the NSF 

under grant number 0964526. 

 

Author Contributions 

 

RBM and JRR conceived of the presented idea. RBM and CMJ 

developed the theory, performed the computations and verified the 

analytical methods. JNL encouraged RBM and JRR to investigate 

published models and supervised the findings of this work. All authors 

discussed the results and contributed to the final manuscript. 

 

Conflicts of Interest 

 

The authors whose names are listed certify that they have no affiliations 

with or involvement in any organization or entity with any financial 

interest (such as honoraria; educational grants; participation in speakers’ 

bureaus; membership, employment, consultancies, stock ownership, or 

other equity interest; and expert testimony or patent-licensing 

arrangements), or non-financial interest (such as personal or professional 

relationships, affiliations, knowledge or beliefs) in the subject matter or 

materials discussed in this manuscript.  

 

REFERENCES 

 

1. Birkhead GS, Klompas M, Shah NR (2015) Uses of electronic health 

records for public health surveillance to advance public health. Annu 

Rev Public Health 36: 345-359. [Crossref] 

2. Adler Milstein J, DesRoches CM, Kralovec P, Foster G, Worzala C et 

al. (2015) Electronic Health Record Adoption In US Hospitals: 

Progress Continues, But Challenges Persist. Health Aff (Millwood) 34: 

2174-2180. [Crossref] 

3. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new 

method of classifying prognostic comorbidity in longitudinal studies: 

development and validation. J Chronic Dis 40: 373-383. [Crossref] 

4. Arrigo RT, Kalanithi P, Cheng I, Alamin T, Carragee EJ et al. (2011) 

Charlson score is a robust predictor of 30-day complications following 

spinal metastasis surgery. Spine (Phila Pa 1976) 36: E1274-E1280. 

[Crossref] 

5. Dekker JW, Gooiker GA, van der Geest LG, Kolfschoten NE, 

Struikmans H et al. (2012) Use of different comorbidity scores for risk-

adjustment in the evaluation of quality of colorectal cancer surgery: 

does it matter? Eur J Surg Oncol 38: 1071-1078. [Crossref] 

6. Strand TE, Rostad H, Damhuis RA, Norstein J (2007) Risk factors for 

30-day mortality after resection of lung cancer and prediction of their 

magnitude. Thorax 62: 991-997. [Crossref] 

7. Saklad M (1941) GRADING OF PATIENTS FOR SURGICAL 

PROCEDURES. Anesthesiology 2: 281-284.  

8. Committee on Standards and Practice Parameters, Apfelbaum 

JL, Connis RT, Nickinovich DG; American Society of 

Anesthesiologists Task Force on Preanesthesia Evaluation et al. (2012) 

Practice advisory for preanesthesia evaluation: an updated report by the 

American Society of Anesthesiologists Task Force on Preanesthesia 

Evaluation. Anesthesiology 116: 522-538. [Crossref] 

9. Sathiyakumar V, Molina CS, Thakore RV, Obremskey WT, Sethi MK 

(2015) ASA score as a predictor of 30-day perioperative readmission 

in patients with orthopaedic trauma injuries: an NSQIP analysis. J 

Orthop Trauma 29: e127-e132. [Crossref] 

10. Woodfield JC, Beshay NM, Pettigrew RA, Plank LD, van Rij AM 

(2007) American Society of Anesthesiologists classification of physical 

status as a predictor of wound infection. ANZ J Surg 77: 738-741. 

[Crossref] 

11. Yeoh CJ, Fazal MA (2014) ASA Grade and Elderly Patients With 

Femoral Neck Fracture. Geriatr Orthop Surg Rehabil 5: 195-199. 

[Crossref] 

J Surg Oncol  doi: 10.31487/j.JSO.2020.01.10     Volume 3(1): 8-9  

https://www.ncbi.nlm.nih.gov/pubmed/25581157
https://www.ncbi.nlm.nih.gov/pubmed/26561387
https://www.ncbi.nlm.nih.gov/pubmed/3558716
https://www.ncbi.nlm.nih.gov/pubmed/21358481
https://www.ncbi.nlm.nih.gov/pubmed/22703758
https://www.ncbi.nlm.nih.gov/pubmed/17573442
https://www.ncbi.nlm.nih.gov/pubmed/22273990
https://www.ncbi.nlm.nih.gov/pubmed/25072291
https://www.ncbi.nlm.nih.gov/pubmed/17685948
https://www.ncbi.nlm.nih.gov/pubmed/26246942


Cumulative Perioperative Model       9 

 

12. Lavelle EA, Cheney R, Lavelle WF (2015) Mortality Prediction in a 

Vertebral Compression Fracture Population: the ASA Physical Status 

Score versus the Charlson Comorbidity Index. Int J Spine Surg 9: 63. 

[Crossref] 

13. Novotny V, Froehner M, Koch R, Zastrow S, Heberling U et al. (2016) 

Age, American Society of Anesthesiologists physical status 

classification and Charlson score are independent predictors of 90-day 

mortality after radical cystectomy. World J Urol 34: 1123-1129. 

[Crossref] 

14. Gawande AA, Kwaan MR, Regenbogen SE, Lipsitz SA, Zinner MJ 

(2007) An Apgar score for surgery. J Am Coll Surg 204: 201-208. 

[Crossref] 

15. Regenbogen SE, Ehrenfeld JM, Lipsitz SR, Greenberg CC, Hutter MM 

et al. (2009) Utility of the surgical apgar score: validation in 4119 

patients. Arch Surg 144: 30-37. [Crossref] 

16. Assifi MM, Lindenmeyer J, Leiby BE, Grunwald Z, Rosato EL et al. 

(2012) Surgical Apgar score predicts perioperative morbidity in 

patients undergoing pancreaticoduodenectomy at a high-volume center. 

J Gastrointest Surg 16: 275-281. [Crossref] 

17. Prasad SM, Ferreria M, Berry AM, Lipsitz SR, Richie JP et al. (2009) 

Surgical apgar outcome score: perioperative risk assessment for radical 

cystectomy. J Urol 181: 1046-1053. [Crossref] 

18. Zighelboim I, Kizer N, Taylor NP, Case AS, Gao F et al. (2010) 

"Surgical Apgar Score" predicts postoperative complications after 

cytoreduction for advanced ovarian cancer. Gynecol Oncol 116: 370-

373. [Crossref] 

19. Fitz Henry J (2011) The ASA classification and peri-operative risk. Ann 

R Coll Surg Engl 93: 185-187. [Crossref] 

20. Elixhauser A, Steiner C, Harris DR, Coffey RM (1998) Comorbidity 

measures for use with administrative data. Med Care 36: 8-27. 

[Crossref] 

21. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B et al. (2005) 

Coding algorithms for defining comorbidities in ICD-9-CM and ICD-

10 administrative data. Med Care 43: 1130-1139. [Crossref] 

22. Sessler DI, Sigl JC, Manberg PJ, Kelley SD, Schubert A et al. (2010) 

Broadly applicable risk stratification system for predicting duration of 

hospitalization and mortality. Anesthesiology 113: 1026-1037. 

[Crossref] 

23. Dalton JE, Kurz A, Turan A, Mascha EJ, Sessler DI et al. (2011) 

Development and validation of a risk quantification index for 30-day 

postoperative mortality and morbidity in noncardiac surgical patients. 

Anesthesiology 114: 1336-1344. [Crossref] 

24. Le Manach Y, Collins G, Rodseth R, Le Bihan Benjamin C, Biccard B 

et al. (2016) Preoperative Score to Predict Postoperative Mortality 

(POSPOM): Derivation and Validation. Anesthesiology 124: 570-579. 

[Crossref] 

25. Glance LG, Lustik SJ, Hannan EL, Osler TM, Mukamel DB et al. 

(2012) The Surgical Mortality Probability Model: derivation and 

validation of a simple risk prediction rule for noncardiac surgery. Ann 

Surg 255: 696-702. [Crossref] 

26. Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical 

comorbidity index for use with ICD-9-CM administrative databases. J 

Clin Epidemiol 45: 613-619. [Crossref] 

27. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a 

receiver operating characteristic (ROC) curve. Radiology 143: 29-36. 

[Crossref] 

28. Japkowicz N (2000) The Class Imbalance Problem: Significance and 

Strategies. Proceedings of the 2000 International Conference on 

Artificial Intelligence. 

29. Austin SR, Wong YN, Uzzo RG, Beck JR, Egleston BL (2015) Why 

Summary Comorbidity Measures Such As the Charlson Comorbidity 

Index and Elixhauser Score Work. Med Care 53: e65-e72. [Crossref] 

30. de Groot V, Beckerman H, Lankhorst GJ, Bouter LM (2003) How to 

measure comorbidity. a critical review of available methods. J Clin 

Epidemiol 56: 221-229. [Crossref] 

31. Quan H, Li B, Couris CM, Fushimi K, Graham P et al. (2011) Updating 

and validating the Charlson comorbidity index and score for risk 

adjustment in hospital discharge abstracts using data from 6 countries. 

Am J Epidemiol 173: 676-682. [Crossref] 

32. Romano PS, Roos LL, Jollis JG (1993) Adapting a clinical comorbidity 

index for use with ICD-9-CM administrative data: differing 

perspectives. J Clin Epidemiol 46: 1075-1090. [Crossref] 

33. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H et al. 

(2004) New ICD-10 version of the Charlson comorbidity index 

predicted in-hospital mortality. J Clin Epidemiol 57: 1288-1294. 

[Crossref] 

34. van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ (2009) A 

modification of the Elixhauser comorbidity measures into a point 

system for hospital death using administrative data. Med Care 47: 626-

633. [Crossref] 

35. Chu YT, Ng YY, Wu SC (2010) Comparison of different comorbidity 

measures for use with administrative data in predicting short- and long-

term mortality. BMC Health Serv Res 10: 140. [Crossref] 

36. Li P, Kim MM, Doshi JA (2010) Comparison of the performance of the 

CMS Hierarchical Condition Category (CMS-HCC) risk adjuster with 

the Charlson and Elixhauser comorbidity measures in predicting 

mortality. BMC Health Serv Res 10: 245. [Crossref] 

37. Southern DA, Quan H, Ghali WA (2004) Comparison of the Elixhauser 

and Charlson/Deyo methods of comorbidity measurement in 

administrative data. Med Care 42: 355-360. [Crossref] 

38. Wolters U, Wolf T, Stutzer H, Schroder T (1996) ASA classification 

and perioperative variables as predictors of postoperative outcome. Br 

J Anaesth 77: 217-222. [Crossref] 

39. Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP (2017) 

Opportunities and challenges in developing risk prediction models with 

electronic health records data: a systematic review. J Am Med Inform 

Assoc 24: 198-208. [Crossref]

 

J Surg Oncol  doi: 10.31487/j.JSO.2020.01.10     Volume 3(1): 9-9  

https://www.ncbi.nlm.nih.gov/pubmed/26767155
https://www.ncbi.nlm.nih.gov/pubmed/26658887
https://www.ncbi.nlm.nih.gov/pubmed/17254923
https://www.ncbi.nlm.nih.gov/pubmed/19153322
https://www.ncbi.nlm.nih.gov/pubmed/22033701
https://www.ncbi.nlm.nih.gov/pubmed/19150094
https://www.ncbi.nlm.nih.gov/pubmed/20015540
https://www.ncbi.nlm.nih.gov/pubmed/21477427
https://www.ncbi.nlm.nih.gov/pubmed/9431328
https://www.ncbi.nlm.nih.gov/pubmed/16224307
https://www.ncbi.nlm.nih.gov/pubmed/20966661
https://www.ncbi.nlm.nih.gov/pubmed/21519230
https://www.ncbi.nlm.nih.gov/pubmed/26655494
https://www.ncbi.nlm.nih.gov/pubmed/22418007
https://www.ncbi.nlm.nih.gov/pubmed/1607900
https://www.ncbi.nlm.nih.gov/pubmed/7063747
https://www.ncbi.nlm.nih.gov/pubmed/23703645
https://www.ncbi.nlm.nih.gov/pubmed/12725876
https://www.ncbi.nlm.nih.gov/pubmed/21330339
https://www.ncbi.nlm.nih.gov/pubmed/8410092
https://www.ncbi.nlm.nih.gov/pubmed/15617955
https://www.ncbi.nlm.nih.gov/pubmed/19433995
https://www.ncbi.nlm.nih.gov/pubmed/20507593
https://www.ncbi.nlm.nih.gov/pubmed/20727154
https://www.ncbi.nlm.nih.gov/pubmed/15076812
https://www.ncbi.nlm.nih.gov/pubmed/8881629
https://www.ncbi.nlm.nih.gov/pubmed/27189013

