Research Article

Oral Dysbiosis Exacerbates *Candida parapsilosis* Sensu Stricto Biofilm Production via Up-Regulation of the CPH2 Biofilm Master Gene

Rodríguez ML, Rosa AC, Nastri ML and Jewtuchowicz VM

1University of Cuenca, Chair of Microbiology and Diagnostic Clinic, School of Dentistry, Cuenca, Ecuador
2University of Buenos Aires, School of Medicine, Research in Microbiology, Parasitology and Immunology Institute (IMPaM), Buenos Aires, Argentina
3Microbiology Department, University of Buenos Aires, School of Dentistry, Buenos Aires, Argentina
4Endodontics Department, University of Buenos Aires, School of Dentistry, Buenos Aires, Argentina

ARTICLE INFO

Article history:
Received: 13 March, 2021
Accepted: 25 March, 2021
Published: 22 April, 2021

Keywords:
Candida parapsilosis sensu stricto virulence
oral dysbiosis
oral eubiosis
CPH2 gene master

ABSTRACT

Introduction: *Candida parapsilosis* sensu stricto is the second to third most frequent cause of candidemia. Studies place this yeast as a frequent colonizer of niches of the oral cavity, predominantly in pathological conditions. We hypothesize that a buccal environment in dysbiosis enhances the virulence of *C. parapsilosis* sensu stricto.

Objective: To evaluate the phenotype and molecular level of the production of biofilm in oral isolates of *Candida parapsilosis* sensu stricto and correlate the results with the clinical origin (dysbiosis versus eubiosis).

Materials and Methods: The biofilm-forming ability was compared in 50 oral isolates of *Candida parapsilosis* sensu stricto obtained from patients with and without oral dysbiosis; by quantification of metabolic activity. The results were corroborated by confocal fluorescence microscopy, and correlated with the transcriptional activity of *CPH2*, by RT-qPCR. The data were analysed by Excel 2010, and InfoStat 2018, with a 95% confidence interval.

Results: The metabolic activity in biofilm was significantly higher in oral dysbiosis relative to control (p = 0.0025). Basal expression of *CPH2* increased 2.8 times more in oral dysbiosis related to the control condition and showed no significant differences with pathogenic isolates of this same yeast, derived from onychomycosis lesions.

Conclusion: The oral cavity in dysbiosis increases the virulence of *C. parapsilosis* sensu stricto due to possible changes in epigenetic marks. This finding suggests that the oral cavity in dysbiosis may be an alternative route to the skin in the epidemiology of nosocomial candidemia.

© 2021 Rodríguez ML. Hosting by Science Repository. All rights reserved.

Get access to the full version of this article: http://dx.doi.org/10.31487/j.DOBCR.2021.01.07