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A B S T R A C T 

 

A predisposition to cancer can be inherited, but it often occurs 

spontaneously due to exposure to environmental risk factors such as 

smoking, high-energy radiation, or carcinogenic chemical substances. 

Cancer can also be caused by infections with certain bacteria, e.g., 

Helicobacter pylori [1]. More often, cancer can be caused by viruses, the 

major cause of cervical cancer, and presumably Epstein-Barr virus 

(EBV), which is linked to Burkitt’s lymphoma [2, 3]. Ultimately, all 

triggers result in mutations and/or epigenetic changes in DNA structure 

that inactivate tumor-suppressor genes such as TP53 or activate proto-

oncogenes such as HER-2 [4]. The trigger may in some cases be directly 

mutagenic, e.g., (1) the induction of point mutations by alkylating 

agents, nucleoside analogs, or intercalating chemicals; (2) the incorrect 

repair of DNA double-strand breaks induced predominantly by 

radiation; or (3) the integration of foreign DNA, disrupting the original 

genetic context and causing aberrant gene expression as observed for 

some viruses. The effects can also be indirect, e.g., the induction of 

chronic inflammation or infections that promote the proliferation of a 

subset of cells, e.g., B-lymphocytes, increasing the likelihood of 

uncontrolled growth as assumed for EBV in Burkitt’s lymphoma. 

 

Chemotherapy is the treatment of cancer with drugs. This approach is 

advantageous because it can kill residual cancer cells and small, 

undetectable secondary tumors [5]. Chemotherapy can also be combined 

with radiotherapy to increase the therapeutic efficacy [6]. One drawback 

is that the efficacy of chemotherapy depends on the way drugs are 

distributed in tissues, and poor results are often observed with larger 

solid tumors due to the limited vascularization, which prevents effective 

tumor penetration [7]. The active pharmaceutical ingredients (APIs) 

used for chemotherapy are often small molecules, such as paclitaxel [8]. 

Such molecules can circulate relatively freely and reach the tumor site(s) 

even if their precise location is unknown. The first generation of 

chemotherapeutics were developed to disrupt the metabolism and/or 

mitotic activity of rapidly dividing cells, whereas the second generation 

instead targeted signaling components, such as protein kinases or growth 

factor receptors [8]. For example, paclitaxel is a first-generation drug 

that disrupts mitosis by preventing tubulin depolymerization, whereas 

gefitinib is a second-generation drug that inhibits signaling via the 

epidermal growth factor receptor. Whereas some cancer drugs have a 

simple structure suitable for total chemical synthesis, most are complex 

molecules that must be produced using biotechnology [9]. Paclitaxel 

provides a useful example of the latter scenario. This compound was 

originally isolated from the bark of the Pacific yew tree (Taxus 

brevifolia) but is now produced in transgenic plant cell suspension 

cultures at the 75,000-L scale [10]. Some cancer drugs demonstrate 

limited selectivity, but most also affect rapidly dividing healthy cells, 

such as hair follicle cells and B-lymphocytes, resulting in the common 
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side effects of chemotherapy: hair loss and a compromised immune 

system [11]. 

 

Monoclonal antibodies (mAbs) are directed against cancer-specific cell 

surface structures including receptors and other surface proteins that are 

overexpressed in tumors, or glycan structures that are more common in 

cancer cells – these tumor-selective targets are collectively described as 

tumor markers [12]. After binding to cancer cells, the mAbs can elicit 

antibody-dependent cellular cytotoxicity (ADCC) or complement-

dependent cytotoxicity (CDC) through their constant domains, causing 

natural killer (NK) cells to force the cancer cells into apoptosis [13]. 

Alternatively, the antibodies may block the binding of growth factors or 

carry a toxic conjugate such as monomethyl auristatin E, which is taken 

up into the tumors [14]. Such antibody-drug conjugates (ADCs) can 

combine the ADCC of regular antibodies with the additional toxic effect 

of a conjugated cytotoxic effector [15]. Lectins are another class of 

molecules that can be used for immunotherapy or chemotherapy [16]. 

These plant-derived proteins bind to various carbohydrate structures on 

the cell surface and can induce immunomodulatory effects or apoptosis. 

 

The evolution of nanomedicine for its production have been a great boon 

and have shifted paradigms in therapy and tissue engineering, owing to 

the advantages of nanocarriers (nanoparticles, micelles, dendrimers, etc.) 

such as a high surface area to volume ratio, unique features of surface 

modification and engineering to obtain particles of various sizes, shapes 

and different chemical characteristics. These have proven to be 

biocompatible, biodegradable and non-toxic which adds to its 

advantages [17]. Major challenges for the preparation of prodrug-loaded 

nanoparticles are to design and prepare desired structures with low 

toxicity, high stability, favorable drug release profiles and acceptable 

cellular uptake. Although the potential of bare inorganic/polymer 

nanoparticles (NPs) has already been shown in the field of drug delivery, 

the researchers have functionalized their surface to further improve the 

biological and physicochemical properties of the NPs for efficient 

intracellular drug delivery [18]. The presence of covalently-bound 

polymer(s) on the surface of the NPs not only improved the 

hydrophilicity of the particles, but also played a crucial role in 

augmenting the aqueous dispersibility of the NPs as a result of the 

electrostatic or steric repulsion forces and thus, preventing the NP's 

aggregation [19]. Furthermore, the increase in the zeta-potential also 

indicated a further improvement of the stability by enhancing the 

repulsion force between the particles [20].  

 

These nanostructures can be synthesized by several methods such as oil-

in-water microemulsion, miniemulsion, surfactant-mediated 

hydrothermal synthesis, hydrothermal synthesis, nanoprecipitation, etc. 

[21]. Suitable manufacturing methods are selected based on the aqueous 

solubility of the amphiphilic block copolymer, the molecular weight of 

each block constituent, and the proportion of each block constituent. In 

the solid dispersion method, an amphiphilic polymer and a hydrophobic 

drug are dissolved in an organic solvent. The solvent is evaporated under 

reduced pressure to form a gel-like polymeric matrix. In the emulsion-

based method, a polymeric dispersed phase is emulsified in an aqueous 

phase. Solvent removal by evaporation and/or extraction causes the 

rearrangement of polymeric chains to form micelles. Nanoprecipitation 

involves the use of a water-miscible solvent (e.g., tetrahydrofuran, 

acetonitrile, acetone, and dimethyl formamide) as a dispersed solvent. 

Addition of the dispersed phase to an aqueous phase triggers instant 

solvent diffusion, leading to spontaneous formation of polymeric 

micelles. The crosslinking agent provides the polymer network structure 

by connecting the long, linear chains in these polymerizations. Hydrogel 

networks formed from poly(acrylic acid) (PAA) have the ability to 

absorb many times their weight in water and are the basis of a class of 

materials called super absorbents [22]. 

 

Ultrasonication is an effective method to fabricate small size 

nanoparticles following double emulsion solvent vaporization protocol, 

since the low ultrasonic vibrational energy used for atomization during 

this process produce high energy which is transmitted directly from the 

tip of the ultrasonic probe into the emulsion, the shear forces generated 

by the alternate expansion and compression of these ultrasonic vibrations 

result in the dispersion of emulsion into nanodroplets, and subsequently 

into nanoparticles upon solvent vaporization [23]. The sol-gel synthesis 

of monodisperse silica nanoparticles ranging in size from 50 nm to 2 µm 

was reported by Stöber and co-workers [24]. Sol-gel chemistry is a 

widely explored process for the synthesis of many inorganic materials. 

Lin and collaborators proposed a new technique for the synthesis of 

porous silica (PSi) NPs using water-in-oil microemulsion as a template. 

The advantages of this method were the uniformly sized particles 

obtained compared to other methods [25]. The imaging or therapeutic 

cargoes can be either directly incorporated in the silica matrix or grafted 

to the outer surface of the solid silica particles. PSiNPs can be 

functionalized with imaging or therapeutic agents in several ways, 

including loading of cargo into the pores, covalent grafting, and co-

condensation of siloxy-derived cargoes [26]. 

 

The particle size can be effectively controlled by adding suitable additive 

agents like surfactants, alcohols, amine, inorganic bases, hydrophobes 

and inorganic salts. Ultrasound (sonication) can also vary the particle 

size and particle distribution. Along with this, the addition of alcohols 

also influenced the particle size of the polymer NPs. Polyethylene glycol 

(PEG)-silane capping on the surface of nanoparticles was also found to 

effectively attenuate the particle growth process by steric stabilization. 

An increase of particle sizes up to 300 nm was reported with an increase 

in the triblock copolymer Pluronic F127 concentration [27]. The 

encapsulation of such a payload by various nano formulations has been 

proven successful in enhancing its efficacy in treating cancers, 

cardiovascular disease, Alzheimer’s disease, inflammatory disorders, 

and neurological disorders [28]. These nano formulations include 

synthetic amphiphilic copolymers, micelles, polymer nanoparticles, 

core@shell nanoparticles, liposomes, polymers, dendrimers, nanogels, 

etc., and these could be translated after preclinical and human clinical 

trials [29]. 

 

The drug loading is mainly based on the adsorptive properties of PSiNPs. 

Both hydrophilic and hydrophobic cargos can be incorporated into the 

pores of PSiNPs. Owing to their large pore volume, PSiNPs inherently 

possess greater loading capacity compared to other carriers. The drug 

loading is mainly based on the adsorptive properties of PSiNPs. The 

loading capacity of PSiNPs could be further enhanced by utilizing 

polymer gatekeeping for the entrapment of hydrophobic drugs [30]. 

Consecutive drug loading process which increases the intermolecular 

interactions can also lead to improved loading of the drugs [31]. An 

increase in the drug feeding ratio was also found to have a profound 
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influence on the loading capacity of PSiNPs [32]. The pore volume of 

PSiNPs is the major factor which dictates the loading of the drug. 

 

The strong cellular association of the functional polymers (such as 

polyethyleneimine (PEI), poly(methyl vinyl ether-alt-maleic acid) 

(PMVE-MA), etc.)-functionalized porous silicon nanoparticles can be 

attributed to the high dispersibility of these NPs as well as bio adhesive 

properties of the polymers [33]. The unique property of some drugs can 

enhance the probability of their interaction with the functional (amine, 

carboxyl, etc.) groups of the polymers conjugated to the SiNPs and, 

consequently, increase their loading degree in the PSiNPs. For example, 

the loading degree of methotrexate (MTX) in the bare PSiNPs was 

~6.4%, whereas PEI and PMVE-MA conjugation improved the MTX 

loading degree to ~12.6 and ~14.0%, respectively [34]. This suggests 

that the polymer conjugation increase the loading of the drug due to the 

more interactions of the drug's functional groups with the free amine and 

carboxyl groups of the polymer conjugated PSiNPs.  

 

Curcumin-loaded chitosan-coated nanoparticles (Cur-CSCNP) was 

reported to decrease the survival and the ability of B16F10 cells to 

generate colonies. Cell migration is an essential component of the 

invasive phenotype of cancer cells [35]. Cur-CSCNP significantly 

slowed the migration rate of the cells into the wounded area compared 

with control group. Treatment with Cur-CSCNP prevented cellular 

growth in the scratched area. Thus, the reduction of cells that have 

migrated or invaded after Cur treatment might be partially due to the 

inhibition of cell proliferation and induction of apoptosis. 

 

Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) 

copolymer (mPEG-PLA) was conjugated with curcumin via a disulfide 

bond or ester bond (control), respectively. The selfassembled redox-

sensitive micelles exhibited a hydrodynamic size of ~116 nm with a zeta 

potential of −10.6 mV. The critical micelle concentration was 

determined at ~ 6.7 μg mL−1. Under sink conditions with a mimicked 

redox environment (10 mM dithiothreitol), the extent of curcumin 

release at 48 h from disulfide bond-linked micelles was nearly three 

times higher compared to the control micelles. Such rapid release led to 

a lower half maximal inhibitory concentration (IC50) in HeLa cells at ~ 

18.5 μg mL−1, whereas the IC50 of control micelles was ~ 41.0 μg mL−1. 

The cellular uptake study also revealed higher fluorescence intensity for 

redox-sensitive micelles. In conclusion, the redox-sensitive polymeric 

conjugate micelles could enhance curcumin delivery while avoiding 

premature release and achieving on-demand release under the high 

glutathione concentration in the cell cytoplasm. This strategy opens new 

avenues for on-demand drug release of nanoscale intracellular delivery 

[36]. 

 

Conclusion 

 

Prodrug decorated nanomaterials are prepared and broadly used for 

imaging and therapeutic applications. The functionalized NPs can be 

decorated with some agents in several ways, including loading of cargo 

into the pores, covalent grafting, and co-condensation of carboxy-

derived cargoes. Polymer and mesoporous silica nanoparticles belong 

among functional nanostructures with a high surface area and tunable 

pore structures exhibiting high delivery activities for various 

therapeutics. The polymeric conjugate micelles could enhance prodrug 

delivery while avoiding premature release and achieving on-demand 

release under the high reducing agent concentration in the cell 

cytoplasm. 
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