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A B S T R A C T 

History of Music and Humanity 

 

Most people have been deriving pleasure from music since long ago. 

Music is deeply associated with human communication and language 

[1]. Music had also been popular as therapy in early history [2]. In 

general, one may conclude that music was frequently employed as a part 

of magical rituals to control the unpredictable and unexplainable forces 

of nature, to calm or satisfy metaphysical forces, such as gods or demons, 

and to combat disease and death. In early history, as still in evidence in 

preliterate societies, these three realms of control of nature, control or 

entreaties of supernatural forces, and control of life and health, must 

have been highly interwoven. In this context, Nettl refers to the 

importance of the physical response, in addition to the emotional 

response, to music by the human organism [3]. Not only does the sound 

production create a physical behavior and general bodily attitude specific 

to the desired sound, but the structures within the music could also create 

specific physical responses. 

 

Music and Clinical Effects 

 

Some Ancient Greeks considered music as therapeutic in more direct 

ways – reflecting and projecting the harmony of the cosmos onto the 

mind and thus creating or reestablishing inner harmony. This process 

was considered not only valuable as therapy, but also for educational 

purposes to strengthen character and virtue. The Aristotelians added a 

new emphasis, explicitly introducing the therapeutic function of 

affective “catharsis” induced by music to relieve the mind from negative 

emotions. We also know from the writings of the physician Asclepiades 

about specific “clinical” prescriptions of music therapy for the treatment 

of mental disorders [2]. 

 

Music therapy has the unique ability to promote neuroplasticity through 

the increase of dopamine production, the synchrony of neural firing, and 

the production of a clear signal. Much of what is taught and inherently 

known in music therapy has roots in neuroplasticity. Music therapists are 

taught to pair non-music tasks/behavior with music. This in itself is a 
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basic principle of neuroplasticity, but now there is more research 

supporting music as a rich neuroplasticity tool. What makes music 

therapy work, though, is the ability of music therapists to know how to 

use/manipulate music to shape the neural responses that underlie 

client/patient behavior [4]. 

 

Music and Dopaminergic Functions 

 

How can we feel happiness or sadness when we listen to music? 

Scientifically, the dorsal and ventral striatum release dopamine when 

listening to pleasurable music. The activity in these structures is known 

to associate with the reward system of the human brain. Moreover, the 

striatum interacts with cortical mechanisms involved in the perception 

and valuation of musical stimuli. In detail, listening to music stimulates 

the nigrostriatal dopaminergic system, as well as the nucleus accumbens 

and ventral tegmental area in the mesolimbic pathway [5-10]. 

Additionally, listening to pleasurable music facilitates neuroplasticity, as 

well as movement, breathing, and heart rate, indicating the immense 

potential of music in the therapy for dementia and movement disorders, 

including Alzheimer's disease and Parkinson's disease [11-14].  

 

Regulation of Dopamine Biosynthesis 

 

Dopamine is biosynthesized from L-tyrosine by tyrosine hydroxylase 

(TH) and aromatic amino acid decarboxylase (AADC) [15, 16]. TH is 

responsible for catalyzing the conversion of the amino acid L-tyrosine to 

L-3,4-dihydroxyphenylalanine (L-DOPA), and subsequently, L-DOPA 

is converted to dopamine by AADC. Tetrahydrobiopterin (BH4), which 

is biosynthesized by GTP cyclohydrolase I (GTPCHI), is required for 

the enzymatic activity of TH. Unlike other enzymes, the TH protein has 

its enzymatic activity strictly controlled at the rate-limiting step of 

dopamine biosynthesis [17, 18]. TH expression level and activity are 

directly involved in regulating intracellular dopamine levels. The 

activity of TH can be modulated by two mechanisms: medium- to long-

term regulation of gene expression, for example by the effect on enzyme 

stability, transcription, RNA stability, alternative RNA splicing, and 

translation; and short-term regulation of enzyme activity, for example by 

feedback inhibition, allosteric regulation, and phosphorylation. 

Regulation of TH expression is dependent on a cAMP-dependent 

responsive element (CRE), AP-1, ATF-2, and Nurr1 [18-22]. 

 

Molecular Mechanism of Dopaminergic Pathogenesis 

 

The reduction of the nigrostriatal TH protein level is a pathological 

feature of Parkinson's disease. Contrary to the decrease in the protein 

level, TH activity from parkinsonian tissue was reportedly increased by 

48% compared to controls, or activity per enzyme protein of TH in the 

parkinsonian nigrostriatal region was elevated by 3-4-fold [23, 24]. The 

increased activity of residual TH in the parkinsonian brain suggests the 

facilitation of TH phosphorylation as a result of a compensatory increase 

in TH activity to compensate for the loss of dopamine caused by the 

disease [25]. In fact, we previously reported that dopamine or biopterin 

deficiency potentiates TH phosphorylation [26]. It is noteworthy that the 

potentiated TH phosphorylation is accompanied by degradation of TH 

protein by the ubiquitin-proteasome system [26, 27]. This mechanism 

suggests the possibility that the dysfunction of dopamine biosynthesis in 

dopamine-related disorders such as Parkinson’s disease and dopa-

responsive dystonia leads to the induction of TH phosphorylation, which 

is accompanied by a reduced total TH protein level induced by 

degradation via the ubiquitin-proteasome system. 

 

Consistently, phosphorylation of the N-terminal portion of TH 

reportedly triggers proteasomal digestion of the enzyme [28]. 

Phosphorylated TH also easily aggregates to form intracellular 

inclusions by proteasomal inhibition [27]. The activity of proteasome is 

reduced in Parkinson’s disease [29, 30]. These phenomena support a 

putative mechanism in which elevation of TH phosphorylation to 

prevent a lack of dopamine in Parkinson’s disease leads to the formation 

of intracellular aggregates of TH protein. Indeed, Lewy bodies are 

phosphorylated TH-immunopositive in the brains of patients with 

Parkinson’s disease [31]. These data suggest that phosphorylated TH is 

vulnerable and that the dopamine-deficient state in Parkinson’s disease 

and related disorders may accelerate the decrease in TH protein level 

through the degradation or accumulation-induced aggregation of 

phosphorylated TH. 

 

Advances in Therapies for Parkinson’s Disease 

 

Fundamental therapies for Parkinson’s disease are not yet well 

established. Almost half a century after it was first introduced, L-DOPA 

(C9H11NO4) is still the most effective medication available for the 

palliative treatment of the motor symptoms in Parkinson’s disease [32, 

33]. Recent progress of treatment technique for Parkinson's disease is 

remarkable; deep brain stimulation is efficacious in the treatment of 

parkinsonian tremor, striatal injection of AADC-coding vectors stably 

restore the response to L-DOPA and contribute to a decrease of the 

effective L-DOPA dose, and stem cell transplantation therapies may 

effectively restore and replace cells in the damaged tissues [34-36]. 

Interestingly, music therapy is popular in medical care for Parkinson's 

disease, as well as pharmacotherapeutic development to potentiate 

dopamine biosynthesis, and the combination [37-41]. In fact, listening to 

music reportedly facilitates dopaminergic neurotransmission in a 

calcium/calmodulin-dependent manner [42, 43]. This phenomenon 

suggests the potential mechanism to facilitate CRE-mediated TH gene 

expression by the activation of calcium/calmodulin-dependent kinase II 

[44]. These reports mentioned above raise the expectations for 

fundamental therapeutics and the benefits of music in neurodegenerative 

disorders. 

 

Future of Music and Dopaminergic Disorders 

 

Parkinson’s disease and related disorders are currently difficult to 

fundamentally cure. However, although fundamental therapies have not 

been established, the development of novel therapeutics is remarkable. 

The combination of medical therapeutics and listening to music, singing 

songs as well as playing instruments can improve not only the motor 

function, but also the emotional and cognitive system. We had spread 

the Kodály method-based piano culture in Japan, which is based on the 

musical education established by Zoltán Kodály. It is already adopted as 

Community Music Therapy for the social and psychological aspects of 

the illness [45]. We further pray for harmony for the development of 

pharmacotherapeutics, diagnostic tools, and musical therapies for 

Parkinson’s disease and related dopaminergic disorders. 
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