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A B S T R A C T 

Background 

 

Colon cancer (CC) is the third common cause of cancer-related deaths 

in the world. In 2017, there will be estimated 95520 new cases of colon 

cancer in the US [1]. While the numbers for colon cancer are fairly equal 

in men (47700) and women (47820). As of January 1, 2016, there were 

724690 men and 727350 women alive in the US with a history of CC 

[2]. Some of these people were cancer-free, while others still had 

evidence of cancer and may have been undergoing treatment. 

Approximately 4.6% of men and 4.2% of women will be diagnosed with 

CC in their lifetime [1]. The risk of CC increases with age; the median 

age at diagnosis for colon cancer is 68 in men and 72 in women [3].  

 

In terms of risk factors, a person’s change of developing colon cancer 

increases as he or she gets older, especially after the age of 50. 

Furthermore, have type 2 diabetes or inflammatory bowel disease, or a 

family history or colon cancer also increases a person’s risk for 

developing the disease, as do some modifiable risk factors like being 

overweight and eating a diet rich in red and processed meats [4]. 

Knowing the causes and risk factors for colon cancer can help you 

understanding the importance of routine screening for colon cancer, as 

well as learn if you are one of the people who should begin screening at 

the earlier age. 

 

In contrast to well-described histopathological findings, data regarding 

clinical features, management, and treatment outcomes are limited to 

case reports, hence human being ask for statistical analysis models as 

auxiliary tools helping doctors to give different prognoses according to 

various patient’s symptoms. For example, patients who died before the 

considered prognosis period are labeled negative and vice versa.  
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In cancer research, cDNA Microarrays and high-density oligonucleotide 

chips are increasingly used and, in the meantime, they raise numerous 

excellent and challenging research problems in fields. By monitoring 

expression levels in cells for tens of thousands of genes simultaneously, 

microarray experiments may lead to a better understanding of the 

molecular variations among tumors and hence to a more informative 

classification [5]. Over the past years, substantial efforts have been made 

on gene expression profile using various machine learning techniques 

for patient outcomes in colon cancer, of which early detection has proven 

to be important yet challenging. Kop R., et. al [6-9]. Propose a dedicated 

medical pre-processing pipeline and they claimed that the predictive 

models generated using their pipeline reconfirmed known predictors and 

identified new, medically plausible, predictors derived from the 

cardiovascular and metabolic disease domain, validating the pipeline’s 

effectiveness. Bychkov D. et. al. trained a deep learning-based classifier 

to predict five-year disease-specific survival in comprehensive series of 

digitized tumor tissue sample of CRC (colorectal cancer) stained for 

basic morphology only. Anguraj S analyzed gene expression profiles 

from 1290 CRC tumors using consensus-based unsupervised clustering 

and obtained some useful results [7-8]. Some detailed comprehensive 

molecular characterization of human colon and rectal cancer can be 

consulted in The Cancer Genome Atlas Network [9]. The Above 

literatures mentioned are rarely relevant to attributes or variables 

selection research. Generally, gene expression data is very large 

attributes but relatively small in samples. Hence, a model including all 

of the genes is not much parsimonious and explanatory. In this paper, we 

will focus on variables selection based on penalty function used widely 

in statistics and our goal is to construct a parsimonious machine learning 

model and at the same time to let this model inherit high classification 

accuracy degree. 

 

Table 1: Simulation results of PC and PIC index for variable selection methods. 

Method PC PIC Method PC PIC 

n=200, p=15 n=300, p=50 

Lasso 11.21 0.14 Lasso 44.33 0.29 

Adaptive lasso 11.34 0.05 Adaptive lasso 45.59 0.08 

Elastic Net 11.49 0.02 Elastic Net 45.24 0.06 

SCAD 12.22 0.10 SCAD 46.68 0.11 

MCP 12.28 0.09 MCP 47.01 0.08 

BAR 12.69 0.09 BAR 47.59 0.11 

Logistic BAR 12.78 0.01 Logistic BAR 47.68 0.00 

From the above table, we find that the performances of PC and PIC of Logistic BAR technique are the best among all the other variable selection models. 

 

Method 

 

I Binary Logistic Regression 

 

Binary logistic regression is often used for modeling binary outcome 

variables such as yes “1” or no “0”. It is assumed that the binary 

response, 𝑌, takes the values of 0 and 1 with 0 meaning the trait is not 

present in observation and 1 meaning the trait is present in observation. 

Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝)
Τ
be a set of explanatory variables. 𝑥𝑖𝑗(𝑖 =

1,2, ⋯ , 𝑗 = 1,2, ⋯ 𝑝) is denoted as the observed value of the explanatory 

variable 𝑋𝑗 for the 𝑖th observation sample. The binary logistic regression 

arises from the desire to model the posterior probabilities of the two 

classes via linear functions in 𝑥𝑖𝑗, while at the same time ensuring that 

they sum to one and remain in [0,1]. The model has the form 

log [
p

1 − p
] = βTX = β0 + β1X1 + ⋯ + βpXp 

where p = Pr(Y = 1|X = x) , β = (β0, β1, ⋯ βp)T . A simple calculation 

shows that 

Pr(Y = 1|X = x) =
exp(β0 + β1X1 + ⋯ + βpXp)

1 + exp(β0 + β1X1 + ⋯ + βpXp)
; 

Pr(Y = 0|X = x) =
1

1 + exp(β0 + β1X1 + ⋯ + βpXp)
. 

Logistic regression models are usually fit by maximum likelihood, using 

the conditional likelihood of Y given X. So, the likelihood of the binary 

logistic regression for n observations are  

L(β) = ∏ Pr(Yi = yi) =

n

i=1

∏ pyi(1 − p)1−yi

n

i=1

 

And the log-likelihood function is 

lnL(β) = ∑(yi log p + (1 − yi) log(1 − p))

n

i=1

 

     = ∑(yilog
p

1 − p
+ log (1 − p))

n

i=1

 

        = ∑(yiβ
Tx − log (1 + exp(βTx))

n

i=1

 

The above regression model shows that once the regression coefficient 

𝛽𝑇 is fixed, we can easily compute the probability that 𝑌 = 1, or the 

probability that 𝑌 = 0 for a given observation. To maximize the log-

likelihood, we set its derivatives to zero. These score equations are 

∂lnL(β)

∂β
= ∑ xi (yi −

exp (βTx)

1 + exp (βTx)
)

n

i=1

= 0 

which are p + 1 equations nonlinear in β. To solve the score equations 

above, we use the Newton-Raphson algorithm, which requires the 

second-derivative or Hessian matrix 

∂2lnL(β)

∂β ∂βT
= − ∑ xixi

Tp(1 − p)

n

i=1

 

Starting with βnew, a single Newton-Raphson update is  

𝛽𝑛𝑒𝑤 = 𝛽𝑜𝑙𝑑 − (
𝜕2𝑙𝑛𝐿(𝛽)

𝜕𝛽𝜕𝛽𝑇
)

−1
𝜕𝑙𝑛𝐿(𝛽)

𝜕𝛽
. 
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This progress begins with a tentative solution, revises it slightly to see if 

it can be improved and repeats this revision until no more improvement 

is made, at which point the process is said to have converged. It is 

convenient to write the score and Hessian in matrix notation. Let y 

denote the vector of yi values, X the N × (p + 1) matrix of xi values, P 

the vector of fitted probabilities with ith element p(xi; βold) and W an 

N × N diagonal matrix of weights with ith diagonal element 

p(xi; βold)(1 − p(xi; βold)). Then 

∂lnL(β)

∂β
= XT(y − P); 

∂2lnL(β)

∂β ∂βT
= −XTWX 

The Newton-Raphson step is thus: 

βnew = βold + (XTWX)−1XT(y − P)= (XTWX)−1XTW (Xβold +

W−1(y − P)) 

= (XTWX)−1XTWz 

where the response z =  Xβold + W−1(y − P) sometimes is known as 

the adjusted response. These equations get solved repeatedly, since at 

each iteration P changes, and hence so does W and z. This algorithm is 

referred to as iteratively reweighted least squares, since each iteration 

solves the weighted least squares problem: 

βnew ← argminβ(z − Xβ)TW(z − Xβ) 

However, there exists a common and tough question, that is, standard 

errors of the estimator of coefficient vector β increases when real data 

sets have a large ratio of variables to cases or high correlations between 

predictors are very serious. Most researchers think it is the actual final 

aim to select real and important predictors from candidates rather than 

only calculate the coefficient estimation values of β. So logistic 

regression faces a variable selection process. 

 

II Variable Selection Methods 

 

A natural approach to variable selection is L0-penalized regression, 

however, the L0-penalization problem is nonconvex and finding its 

global optima requires exhaustive combinatorial best subset search, 

which is NP-hard and computationally infeasible even for data in 

moderate dimension. Moreover, it can be unstable for variable selection 

[10]. A popular alternative is L1-penalized regression, or Lasso, which 

is known to be consistent for variable selection [11-13]. During the past 

two decades, much efforts have been devoted to improving Lasso using 

various variants of the L1 penalty, which are not only consistent for 

variable selection, but also consistent for parameter estimation [14-19]. 

In addition, the L1

III BAR Regression Estimation Procedure 

 

Now suppose that we are interested in simultaneous estimation and 

variable selection using logistic regression. For this, we will first develop 

a general penalized estimation procedure, especially, design a new 

penalty function. To develop a penalized procedure for β based on the 

estimation procedure mentioned above, it would be very natural to 

consider and approximate β by  

g(β̃) = argminβ{
1

2
(z − Xβ)TW(z − Xβ) + λn ∑

βj
2

βj
2̃

pn

j=1
} 

Where β̃ = (β̃1, β̃2, ⋯ , β̃p)′ denotes a good initial estimator of β. Then 

we have 

g(β̃) = (XTWX + λn∑(β̃))−1XTWz 

Where ∑(�̃�) = 𝑑𝑖𝑎𝑔(�̃�1
−2, �̃�2

−2, ⋯ , �̃�𝑝
−2). This suggests we can estimate 

𝛽 by the broken adaptive ridge (BAR) estimator defined as 

�̂�∗ = lim
𝑘→+∞

�̂�(𝑘) 

Based on the iterated formula �̂�(𝑘) = 𝑔(�̂�(𝑘−1)). 

IV Simulation Study 

 

In order to evaluate the quality of various variable selection methods, 

numerical simulation is needed. We apply the following two criteria to 

compare the results of each approaches:  

1. PC: Percentage of the zeros coefficients that are correctly 

estimated to be zeros after variable selection; 

PC =
1

p − p0

(
1

n
∑ ∑ I(β̂j(k) = 0) × I(βj = 0)

p

j=1

n

k=1

) 

 

where p is the number of all the features in the model which will produce 

the simulation data and p0 is the selected number of variables from all 

the features. 

2. PIC: Percentage of the non-zeros coefficients that are incorrectly 

estimated to zeros after variable selection.  

PIC =
1

p0

(
1

n
∑ ∑ I(β̂j(k) = 0) × I(βj ≠ 0)

p

j=1

n

k=1

) 

In our simulation, we assume that X1, X2, … , Xn and Z are from standard 

normal distribution N(0,1). Denote covariate Wi =
(Xi+Z)

√2
(i = 1,2, … , n) 

and response Y′s probability mass function is from 

Pr(Y = 1|W) =
exp(Wp + Wp

2 + Wp
3 + 1.5Wq − Wq

2 + 0.7Wq
3)

1 + exp(Wp + Wp
2 + Wp

3 + 1.5Wq − Wq
2 + 0.7Wq

3)
 

where p, q are any two constants less than n. The following table lists 

two results of scenarios. 

 

An Application 

 

Materials and Results 

 

In this section, we will apply the logistic BAR estimation and variable 

selection method proposed in the previous sections to two real data sets. 

-penalized optimization problem can be solved exactly 

with efficient algorithms and the method became popular since the 

introduction of the least LASSO method [20]. However, it is known that 

LASSO does not have the oracle property as it tends to select too many 

small noise features and is biased for large parameters. In addition, it 

cannot accommodate the grouping effect when covariates are highly 

correlated. To address these, several approaches have been proposed 

including the ALASSO and SCAD [14, 19]. In this article, we propose a 

broken adaptive ridge (BAR) regression approach that approximates the 

L0-penalized regression using an iteratively reweighted L2-penalized 

algorithm for variable selection [21]. The following paragraphs will 

describe the BAR regression estimation procedure. 
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The first data set is about Pima Indian Diabetes. Diabetes is a group of 

metabolic diseases in which there are high blood sugar levels over a 

prolonged period. Symptoms of high blood sugar include frequent 

urination, increased thirst, and increased hunger. To study the reason that 

leading to diabetes, a cluster of data set about Pima Indian Diabetes was 

collected. It is consisted of 8 predict variables and 1 response variable 

(1: Diabetes, 0: Not). The variables are (0):PRG（number of times 

pregnant）, (1):PLASMA(Plasma glucose concentration in saliva), 

(2):BP(Diastolic blood pressure), (3):THICK(Triceps skin fold 

thickness), (4):INSULIN(two Hours serum insulin), (5):BODY(Body 

mass index: Weight/Height), (6):PEDIGREE(Diabetes pedigree 

function), (7):AGE (In years). After randomly selecting 768 female 

patients over 21 years old, 9 variables were taken to fit logistic regression 

to predict probability that individual females have diabetes. In order to 

compare the performances of all the variable selection approaches, we 

randomly select 2/3 samples from 768 patients as our training data to 

construct models and remaining 1/3 samples as our test data to predict 

their probability that individual females have diabetes or not. Table 2 

presents all the results of considered variable selection methods: 

 

Table 2: Variable selection results of Pima Indian Diabetes. 

Methods Variable Number Variable Name Accuracy rate of fitting Accuracy rate of predicting 

Logistic  8 [0 1 2 3 4 5 6 7] 0.75390625 0.7421875 

Lasso 4 [0 1 5 7] 0.7734375 0.763671875 

Adaptive lasso 7 [0 1 2 4 5 6 7] 0.771484375 0.78515625 

Elastic Net 5 [0 1 5 6 7] 0.767578125 0.78515625 

SCAD 5 [0 1 2 5 6] 0.763671875 0.7890625 

MCP 5 [0 1 2 5 6] 0.763671875 0.7890625 

BAR 4 [0 1 2 5] 0.79296875 0.79296875 

Logistic BAR 5 [0 1 2 5 7] 0.80078125 0.796875 

 

One can see that the results for variable selection number are the same 

for proposed Lasso and BAR which selected 4 variables and the results 

of considered Elastic Net, SCAD, MCP and Logistic BAR choose 5 

variables which is more one variable than the previous two methods. 

From accuracy rate of fitting and accuracy rate of predicting, Logistic 

BAR is the best among other methods. Logistic BAR indicated that skin 

thickness and two hours serum insulin has not much effect on the 

occurrence rate of female diabetes. From all the selected variable results, 

number of times pregnant and Plasma glucose concentration in saliva 

seemed greatly to related to the occurrence rate of female diabetes. 

The second data is about colon cancer which was collected by Alon et. 

al. and is available at http://microarray.princeton.edu/oncology. This 

data set consists of 2000 genes measured on 62 patients: 40 diagnosed 

with colon cancer and 22 healthy patients. The genes are placed in order 

of descending minimal intensity. Each gene was normalized so its 

average intensity across the tissues is 0, and its SD is 1. This is a classical 

data which has a large number of attributes while has a small number of 

samples. Whatever we want to do with this data set, such as gene 

clustering, gene classification, the first step requires us to pick up the 

most important or the most necessary variables from all the candidates 

variables. 

 

Table 3: The averaged results of variable selection for colon cancer data set over 100 sampling. 

Method Variable number Error rate of training data Error rate of testing data 

Logistic 2000 1/31 7/31 

Lasso 23 2/31 4/31 

Adaptive lasso 23 1/31 3/31 

Elastic Net 58 1/31 4/31 

SCAD 16 1/31 4/31 

MCP 11 0/31 3/31 

BAR 4 1/31 3/31 

Logistic BAR 8 1/31 2/31 

 

In our experiments, we randomly select 20 tumor and 11 normal colon 

tissues as our training data and the remaining tissues as our testing data. 

The averaged results over 100 sampling are listed in (Table 3). From the 

Table 4, Lasso, Adaptive lasso and Elastic Net selected dozens of 

variables which is far fewer than the original number 2000. Their error 

rate of testing data is also less than that of logistic regression. SCAD, 

MCP, BAR and logistic BAR can be partitioned into the same group 

among which BAR shows the most performance on selecting the number 

of variables. Although the variables chosen by logistic BAR is 4, the 

error rate of testing data of logistic BAR is exciting, only 2 

misjudgements of 31 samples. 

Conclusions 

 

In this paper, we proposed logistic BAR simultaneous variable selection 

and parameter estimation method for colon cancer and diabetes variable 

selection and predictions. It is verified that it is a valid and effective 

method for dealing with high-dimensional gene expression data. 

Through comparison with classical variable selection method, we show 

the superiority of logistic BAR. Due to inheriting some good properties 

of L0-penalized regression in a sense that it can choose the non-zero 

components and shrink the zero components quickly, accurately and 

unhesitatingly. At the same time, it reserves the version of ridge 
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regression, so there is no much burden in the optimization of objective 

function. In the feature work, we will make some effort to explore the 

oracle property and grouping effect of the resulting estimator from the 

proposed method. 
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