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A B S T R A C T 

Pain is a distressing feeling that is often induced by damaging stimuli. The nerve injuries cause various 

molecular changes in nociceptive primary afferent neurons that cause spontaneous pain. Furthermore, the 

nerve trunk injury induces ectopic discharge, resulting in spontaneous pain. To date, accumulating evidence 

suggests that ion channels which are responsible for neuronal excitability play key roles in generation of 

spontaneous pain. It is believed that voltage-gated Na+ channels (VGSCs) and Ca2+ channels (VGCCs) are 

the primary membrane proteins for causing spontaneous pain. However, it has been evident that various ion 

channels including transient receptor potential (TRP) channels, hyperpolarization-activated cyclic 

nucleotide–gated (HCN) channels and acid-sensing ion channels (ASICs) are associated with generation of 

spontaneous pain. In the present review, I will describe the current knowledge on ion channels related to 

spontaneous pain. 

Introduction 

The sensation of pain is generally caused by activities of Aδ- and C-

primary afferent nociceptive neurons. In the absence of stimuli, these 

nociceptive neurons are silent at rest, but become active in respond to 

noxious stimuli.  However, after injury to peripheral nerves, nociceptive 

neurons become unusually sensitive and generate abnormal spontaneous 

activity [1]. The pain sensation is thus generated by spontaneous activity 

in injured and nearby nociceptive afferent fibers. Spontaneous pain is 

described in the context of chronic neuropathic and chronic 

inflammatory pain conditions. The mechanisms underlying the 

spontaneous pain are poorly understood. There is growing evidence that 

spontaneous action potential firings in neurons that transmit pain signals 

from the injury site to the spinal cord is responsible for spontaneous pain 

[2]. Although it remains largely unknown how the spontaneous firing is 

caused, neuronal excitability that is regulated by ion channels would play 

the essential role.  Several studies in animals and humans demonstrated 

that the increased expression of Na+ channels is involved the occurrence 

of spontaneous pain [1]. Other studies also suggested that modulation of 

K+ and Ca2+ channels plays key roles in spontaneous firings [1]. 

Therefore, it is highly possible that spontaneous pain is caused by 

dysfunction of ion channels. In this review, I will describe evidence that 

several ion channels are responsible for spontaneous pain (Figure 1). 

 

Na+ channels 

 

Na+ channels are composed of transmembrane proteins that have 

voltage-gated pore, where Na+ ions are selectively transported across the 

membrane. The activity of voltage-gated Na+ channels (VGSCs) is 

critical for the excitability and conductivity in neurons [3]. The VGSCs 

consist of large pore-forming α subunits (260 kDa), that may be 

associated with auxiliary β subunits [4]. Until now, it is known that nine 

pore-forming α subunits (Nav1.1-Nav1.9) are present and these channels 

are broadly distributed in the peripheral and central nervous system (PNS 

and CNS. respectively) [5, 6]. Among these voltage-gated Na+ channels, 

Nav1.1, Nav1.2 and Nav1.3 are predominantly expressed in the CNS, 

whereas Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are mainly expressed in 

the PNS [3]. In sensory neurons, the VGSCs are critical determinants of 

the electrical excitability and involved in pain perception by regulating 
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afferent impulse discharges. The composition of voltage-gated Na+ 

channels may undergo significant changes upon nerve injury. 

 

 

 

 

 

 

 

 

 

 

 

A: At peripheral nerve endings of DRG, ASIC3, TRPA1, TRPV1 and 

Nav1.6-1.9 channels mediate spontaneous pain. 

B: Kv channel α subunit genes, TREK2 and HCN channels, which are 

involved in action potential conduction, subserve spontaneous pain.   

C: Kir4.1 channels that are expressed in glial cells are involved in 

spontaneous pain. 

D: Cv2.1 channels that modulate transmitter release are involved in 

spontaneous pain. 

 

Figure 1: Key ion channels involved in spontaneous pain 

 

After axonal damage, Na+ channels accumulate at the sites of sprouting 

[7]. Pharmacological experiments revealed that VGSCs play an 

important role in spontaneous electrogenesis in neurons [8]. The 

accumulation of VGSCs at sites of ectopic nerve impulse generation 

could be associated with the lowing of the threshold for action potential 

and the subsequent hyperactivity [3]. Among several VGSCs, it has been 

demonstrated that Nav1.6-1.9 are involved in the generation of ectopic 

(spontaneous) action potentials following after axonal damage, resulting 

in the spontaneous pain [9]. Nav1.7 channels are predominantly present 

in the dorsal root ganglion (DRG) and produce a rapidly activating and 

inactivating current which is sensitive to tetrodotoxin [9]. Nav1.7 

channels contribute to the peripheral nociceptive sensory neuron 

excitability and carry nociceptive signals into the spinal cord, 

presumably through facilitation of action potential propagation [9]. 

Several clinical genetic researches have demonstrated that deficiency of 

function of Nav1.7 channels (encoded by the SCN9A gene) caused 

complete inability to perceive pain [10]. In addition, a gain-of-function 

Nav1.7 mutation caused or contributed to chronic spontaneous pain [11, 

12]. Nav1.8 channels produce slowly inactivating currents which are 

preferentially expressed in the trigeminal ganglion and DRG [9]. Several 

lines of evidence have supported that Nav1.8 channels play an essential 

role in pain perception.  Nav1.8 channels contribute substantially to the 

Na+ currents underlying the rising phase of action potential in the C-type 

DRG neurons [13]. It has also been reported that sensory neurons 

expressing Nav1.8 are pivotal for responses to cold and noxious 

mechanical pressure but not acute noxious heat [14]. Furthermore, 

Nav1.8 channels were suggested to be involved in inflammatory pain but 

not for neuropathic pain [14]. A mutation study of SCN10A that is a gene 

encoding Nav1.8 has shown the relationship between Nav1.8 channels 

and human pain [15]. Nav1.9 channels are mainly present in small-sized 

neurons of DRG and trigeminal ganglion [9]. Nav1.9 channels show 

slower activation kinetics than that of Nav1.8 channels, and 

consequently are not responsible for the action potential upswing [16]. 

Furthermore, Nav1.9 channels show slow inactivation kinetics over a 

wide voltage range, rendering it to generate a component of persistent 

Na+ currents [16].  Therefore, Nav1.9 channels could play a critical role 

in determining the excitability of nociceptive neurons by modulation of 

the resting membrane potential and responses to subthreshold stimuli. A 

direct role of Nav1.9 channels in the spontaneous pain responses and 

persistent hypersensitivity to heat following peripheral inflammation and 

nerve injury has been demonstrated in a study using mutations of 

SCN11A, the gene that encodes Nav1.9 [17]. It has also been 

demonstrated that using Nav1.9 knockout mice and Nav1.9 knockdown 

rats, Nav1.9 channels play a critical role in generation of hypersensitivity 

to mechanical and thermal stimuli both in chronic and subacute 

inflammatory pain conditions [18]. In comparison with the functional 

roles of Nav1.7-1.9 channels, little information is available for the 

functional role of Nav1.6 channels in peripheral sensory neurons.  

However, it has been shown that an injection of a Nav1.6 activator 

induced mechanical allodynia and spontaneous pain, and increased K+-

channel blocker 4-aminopyridine-induced cold allodynia [19]. These 

findings suggest a critical role of Nav1.6 channels in multiple pain 

pathways from peripheral nociceptors. Taken together, it is strongly 

suggested that Nav channels are key players in the establishment of 

spontaneous pain. 

K+ Channels 

K+ channels are critical determinants of membrane excitability in the 

CNS. A large number of studies revealed an involvement of K+ channels 

in processing of nociceptive stimuli. An application of K+ channel 

activators on the axon terminals or cell bodies of DRG neurons decreases 

the membrane excitability while K+ channel inhibitors increase spike 

firings [20]. Thus, it is possible that in chronic pain state, inhibition of 

K+ channels cause the spontaneous activities in neurons. K+ channels are 

grouped into three families based on structural properties [21].  The first 

family is the voltage-gated K+ channels such as the transient voltage-

dependent and delayed rectifier K+ channels and Ca2+-dependent K+ 

channels [22, 23]. The second family is the inwardly-rectifying K+ 

channels such as ATP-sensitive K+ channels [24]. The third family is the 

two-pore-domain K+ (leak K+) channels [21, 25]. 

 

Voltage-gated potassium (Kv) channels are composed of ion-conducting 

 subunits and auxiliary cytoplasmic  subunits. The Kv channels 

subserve important roles in setting the resting membrane potentials, 

mediating the repolarization of action potential and controlling the 

subthreshold membrane potential oscillations [22]. The Kv superfamily 

is known to be composed of 40 human genes [26]. These K+ channels are 

further grouped into 12 classes.  To date, many Kv channels are known 

to be responsible for the inflammatory and neuropathic pain [27].  

Several Kv channels are reported to be involved in the spontaneous pain 

[27]. Following chronic constriction injury in rats, the expression of Kv 

channel  gene was decreased in the DRG neurons and ectopic 

spontaneous discharge was generated at primary sensory neurons [28]. 

The downregulation of Kv9.1 expression after nerve injury triggered 

mechanical allodynia as well as spontaneous and evoked 

hyperexcitability [29]. Thus, the downregulation of the Kv channel 

exerts an important role in spontaneous pain. 

 

Inwardly rectifying K+ channels (Kir) are the two-transmembrane 

domain K+ channels. To date, seven subfamilies have been identified in 

mammalian cells, and they are divided into four functional groups [30]. 
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Kir2.1, Kir2.2 and Kir2.3 are constitutively active while Kir3.1, Kir3.2, 

Kir3.3 and Kir3.4 are regulated by G protein-coupled receptors. Kir6.2 

and Kir6.2 are ATP-sensitive K+ channel families, which are tightly 

associated with cellular metabolism. Kir1, Kir4, Kir5 and Kir7 are 

known as K+ transport channels [30]. Kir channels are widely expressed 

in the CNS and PNS [31]. Similar to the Kv channels, accumulating 

evidence suggests that Kir are responsible for neuropathic and 

inflammatory pain [27].   

 

It is well established that the Kir channels are expressed in supporting 

cells such as glia. The glia expresses diverse Kir channels, whose major 

function is to establish the high K+ selectivity of the cell membrane of 

glial cells and to set the resting membrane potential. Among several Kir 

channels, Kir4.1 has a major regulatory role in glia [31].  For example, 

knockdown of Kir4.1 expression in trigeminal ganglion neurons caused 

membrane hyperexcitability [32]. In Kir4.1 knockout mice, inward 

currents were almost completely absent together with the depolarized 

resting membrane potential [33]. Furthermore, it has been shown that 

Kir4.1 gene silencing by RNA interference resulted in the pain-like 

behavior in rats without nerve injury [34]. In addition, following chronic 

constriction injury of the infraorbital nerve, the expression level of Kir 

channels was decreased in the trigeminal ganglion [34]. These 

observations suggest that spontaneous pain is brought about by the 

decreased expression of Kir4.1 in glial cells.  Thus, targeting Kir4.1 

channel could be a useful treatment for spontaneous pain.   

 

The two-pore-domain K+ (leak K+) channels are open at rest and are the 

main contributors to resting membrane potential in neurons [35]. The 

leak K+ channels contain four transmembrane and two pore domains [21, 

25]. In mammals, 15 gene families are known, and they are grouped into 

six subfamilies: 1) TWIK, tandem of pore domains in a weak inward 

rectifying K+ channel, 2) TREK, TWIK-related K+ channel, 3) TASK, 

TWIK-related acid-sensitive K+ channel, 4) THIK, TWIK-related 

halothane-inhibited K+ channel, 5) TRESK, TWIK-related spinal cord 

K+ channel, 6) TALK, TWIK-related alkali-activated sensitive K+ 

channel [25, 35]. The TWIK group includes TWIK1, TWIK2 and 

KCNK7. The THIK group includes THIK1 and THIK2. The TREK 

group includes TREK1, TREK2 and TRAAK. The TALK group 

includes TASK2, TALK1 and TALK2/TASK4. The TASK group 

includes TASK1, TASK3 and TASK5. The TRESK group includes 

TRESK1. Among these channels, it has been reported that TREK2 

channels are involved in spontaneous pain. In DRG neurons, TREK2 

channels are a pivotal determinant of the resting membrane potential 

[36]. It has also been demonstrated that TREK2 channels were 

selectively expressed in C-fiber nociceptors and inhibit spontaneous pain 

[36]. The knockdown of TREK2 with siRNA induced spontaneous pain 

behavior [36]. These observations suggest that TREK2 channels 

hyperpolarize C-fiber nociceptive neurons and inhibits spontaneous 

pain. 

 

Voltage-gated Ca2+ channels (VGCCs) 

 

VGCCs play critical roles in diverse physiological functions. To date, 

ten members of the VGCC family are described in mammals (Cav1.1, 

Cav1.2, Cav1.3, Cav1.4, Cav2.1, Cav2.2, Cav2.3, Cav3.1, Cav3.2 and 

Cav3.3), and these channels show differential roles in intracellular signal 

transduction [37]. Cav1.1, Cav1.2, Cav1.3 and Cav1.4 are grouped into 

L-type VGCCs, Cav2.1 is grouped into N-type VGCCs, Cav2.2 is 

grouped into P/Q-type VGCCs, Cav2.3 is grouped into R-type VGCCs, 

and Cav3.1, Cav3.2 and Cav3.3 are grouped into T-type VGCCs [37]. 

The family of Cav1 channels is associated with synaptic transmission 

and integration of synaptic inputs in neurons.  The family of Cav2 

channels is involved in initiation of synaptic transmission. The family of 

Cav3 channels is involved in repetitive action potential firings in 

thalamic neurons [38]. Among ten VGCCs, N- and P-type VGCCs are 

predominantly expressed in neuronal tissue in the brain, and Ca2+ influx 

through these channels is essential for depolarization-induced 

transmitter release [39-41]. Antagonists for N- and P-type VGCCs 

showed antinociceptive effects in animal models of inflammation, 

suggesting a role of Ca2+ influx into sensory neurons in the processing 

of nociceptive inputs that occurs at the spinal level [42]. Blockade of N-

type VGCCs has been shown to reduce secondary heat hyperalgesia and 

spontaneous pain-related behaviors associated with acute joint 

inflammation [43]. Also, it has been shown that blockade of N-type 

VGCCs was effective on nociceptive responses in spinal dorsal horn 

neurons following nerve injury [44]. Thus, N-type VGCCs are important 

for generation of spontaneous pain. 

 

Transient receptor potential (TRP) channels 

 

Transient receptor potential vanilloid 1 (TRPV1), known as the 

capsaicin receptor, is a ligand-gated ion channel.  TRPV1 channels are 

activated by multiple pain stimuli such as acid, heat, capsaicin, protons, 

lipids and spider toxins. Furthermore, the activity of TRPV1 channels is 

enhanced by a number of inflammatory mediators including bradykinin, 

prostaglandins, nerve growth factor and ATP [45]. TRPV1 channels are 

predominately localized in small C-type fibers which mediate pain, and 

also present in lamina I and II of the spinal dorsal horn [46, 47].  

Furthermore, TRPV1 channels are localized at the supraspinal level and 

contribute to descending modulation of nociceptive transmission [48]. 

Both the gene deletion and pharmacological studies have shown that 

TRPV1 channels have central roles in inflammatory and neuropathic 

pain [49]. A previous study demonstrated that a potent and selective 

TRPV1 antagonist, ABT-102, was effective in suppression of 

nociceptive pain in rodent various pain models: ABT-102 depressed 

spontaneous pain behaviors [50]. Therefore, antagonist for TRPV1 

channels could be effective for treatment of spontaneous pain. 

 

Transient receptor potential ankyrin 1 (TRPA1), known as a noxious 

cold-activated ion channel, is nonselective cation channels that are 

mainly expressed on nociceptive primary afferent sensory neurons [51]. 

At peripheral terminals of nociceptive sensory neurons, TRPA1 channels 

contribute to transmitting harmful stimuli, whereas at central terminals 

in the spinal dorsal horn, these channels regulate excitatory synaptic 

transmission to interneurons in the spinal cord.  Previous findings 

suggested the involvement of TRPA1 in chronic and acute nociceptive 

processes to cold stimuli [52]. It was reported that TRPA1 contributed 

to spontaneous pain-like behaviors caused by endothelin-1 in mice [53]. 

It has also been demonstrated that TRPA1 was involved in postoperative 

pain in the rat [54]. In their study, intrathecal treatment of a TRPA1 

antagonist attenuated hypersensitivity but not spontaneous pain-like 

behavior, suggesting that TRPA1 channels located in the skin are 

involved in postoperative pain evoked by noxious mechanical stimulus 

while TRPA1 channels in the spinal cord contribute mainly to 

postoperative pain caused by innocuous mechanical stimulus. Thus, it is 
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likely that peripheral TRPA1 channels play essential roles in 

spontaneous pain-like behaviors. 

 

Acid-sensing ion channels (ASICs) 

 

ASICs are H+-gated cationic channels, and ASIC proteins are a 

subfamily of degenerin (DEG)/epithelial sodium channel (ENaC) 

superfamily of non-voltage-gated ion channels [55, 56]. In mice and rats, 

at least six ASIC isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 

and ASIC4) encoded by four separate genes (ACCN1, ACCN2, ACCN3 

and ACCN4) have been described [55]. Among six isoforms, ASIC1a, 

1b, 2a, 2b, and 3 are present in peripheral sensory neurons while ASIC1a, 

2a, and 2b are expressed in the CNS [55]. The ASIC subunits can form 

functional homomultimers as well as heteromultimers. Although the 

exact subunit combinations of functional native ASICs have not been 

identified, the composition of ASIC subunits determines the pH-

sensitivity, ionic selectivity and kinetics of activation and 

desensitization. For example, the desensitization rate of the transient 

current in ASIC1a/ASIC2a heteromeric channels is faster than that of 

ASIC1a or ASIC2a homomeric channels [57]. The pH of halfmaximal 

activation of ASIC homomeric channels are described: 5.8–6.8 for 

ASIC1a, 6.1–6.2 for ASIC1b, 4.5–4.9 for ASIC2a, and 6.4–6.6 for 

ASIC3 [56]. Thus, the extracellular acidification activates ASICs under 

the physiological and pathophysiological states. Several studies 

demonstrated that inflammation and nerve injury induce acidosis, and 

acidic low pH can cause pain [58, 59]. This suggests that ASICs have a 

critical role in nociception.  

 

A previous study demonstrated that ASIC3 display a biphasic current in 

response to acidosis in extracellular pH when these channels were 

expressed in heterologous cells [60]. In addition to a transient inward 

current that was rapidly inactivated, ASIC3 showed a non-desensitizing 

sustained current that lasts as long as the acidic extracellular pH is 

maintained [61]. ASIC3 are expressed predominantly in DRG neurons 

including large-diameter mechanoreceptors and C-fiber nociceptors 

[62]. Therefore, it is conceivable that ASIC3 exert a critical role in 

nociception by acting as an indicator of tissue acidosis. It has previously 

been reported that after injection of acetic acid, spontaneous pain 

behaviors were significantly increased in neuropathic rats induced by the 

spinal nerve ligation (SNL) of the L5 spinal nerves, compared to the 

sham-treated group [63]. Consistent with this behavioral change, the 

immunoreactivity of ASIC3 was significantly upregulated in the 

nociceptive DRG neurons.  These data indicate that ASIC3 are related to 

spontaneous pain in the L5 SNL rat model. Although it is thought that 

ASIC3 are involved in acute pain states, it also contributes to 

spontaneous pain.  The antagonists for ASICs may provide a new option 

for suppressing spontaneous pain. 

 

Hyperpolarization-activated cyclic nucleotide-gated (HCN) 

channels 

 

HCN channels that generate hyperpolarization-activated currents, 

comprise four isoforms: HCN1, HCN2, HCN3 and HCN4 [64]. HCN 

channels are activated at voltages near the typical resting membrane 

potential and are primarily permeable to Na+ and K+. HCN channels are 

widely expressed in the heart and in the CNS and PNS [64].  Among four 

HCN isoforms, HCN1, 2 and 4 channels are responsible for the 

generation of neuronal activity, whereas the functional role of HCN3 

channels remains largely unclear. Several studies have showed that the 

hyperpolarization-activated currents regulate the neuronal membrane 

excitability by regulating basic membrane properties in both the 

physiological and pathological states [64]. HCN channels are known as 

the pacemaker channels since they help to generate rhythmic activities 

of cells both in the brain and heart [64]. Furthermore, it has been reported 

that HCN channels contribute to generation of neuropathic pain, and 

thus, these channels are pharmacological targets to treat neuropathic pain 

[65]. It has been proposed that ectopic discharges are associated with the 

development of spontaneous pain and mechanical allodynia [66]. Such 

spontaneous activities were generated in axons and soma of injured DRG 

neurons. There is evidence supporting the role of the hyperpolarization-

activated current in ectopic discharges. The ectopic discharges are 

primarily generated from large- and medium-diameter DRG neurons in 

chronic neuropathic pain rats of the SNL, the chronic constriction injury 

for the sciatic nerve and the chronic compression for the DRG [67-69]. 

These findings strongly suggest that the hyperpolarization-activated 

currents are produced predominantly in these large-diameter and 

medium-diameter cells. It is generally known that activation time 

constants for HCN channels (ten to hundreds of milliseconds near the 

resting potential) are slower compared with the rapid activation rate for 

ectopic discharges (about 100 Hz) [70]. Thus, it is unlikely that the 

hyperpolarization-activated current participates in generation of ectopic 

discharges.  However, in the dissociated DRG cells from rats subjected 

to chronic compression of the DRG, the time constant of fast activation 

of the hyperpolarization-activated current was significantly upregulated 

[71]. Therefore, it is conceivable that the hyperpolarization-activated 

currents are associated with the rapid ectopic discharges. 

 

Conclusion 

It has been evident that many ion channels contribute to generation of 

spontaneous pain. In addition, treatments for spontaneous pain targeting 

ion channels have grown rapidly.  However, the molecular mechanisms 

by which drugs targeting ion channels relieve spontaneous pain remain 

largely unknown. Understanding these mechanisms will help to develop 

new therapeutic strategies for spontaneous pain. 
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