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A B S T R A C T 

In recent years, evidence has mounted that a particular form of vitamin E (its δ-tocotrienol variant) may 

have cellular functions beyond that of an antioxidant, a role commonly ascribed to the tocotrienol class of 

compounds. In particular, numerous studies of δ-tocotrienol’s effect on cancer cells have identified it as a 

potent anticancer and antitumor agent. However, this important revelation of potential therapeutic use poses 

a series of new challenges, with arguably the most important being the elucidation of the precise mechanism 

of action responsible for the anticancer activity of δ-tocotrienol. As an initial step to address this question, 

we have used a computational tool, Virtual Target Screening (a molecular docking-based tool that identifies 

potential binding partners for small molecules), to identify potential biomolecular targets of δ-tocotrienol. 

Then, to gain a consensus as to the type of biomolecular entity that could be a target for δ-tocotrienol, we 

utilized PharmMapper and PASS (a ligand-based chemoinformatic approach), and ProBiS (a tool that 

analyses binding site similarities across known proteins). The results of our multipronged computational 

consensus-seeking approach showed that such a strategy can identify potential cellular targets of small 

molecules. This is evidenced by our identification of estrogen receptor-beta, a protein that has been 

previously shown to bind δ-tocotrienol, which elicited a cellular response. This study supports the use of 

such a computational approach as an initial step in target identification to avoid time-consuming, costly 

large-scale experimental screening, greatly reducing the experimental work to just one or a few candidate 

proteins. 

 

                                                                           © 2020 Wesley H. Brooks. Hosting by Science Repository.  

Introduction 

 

Vitamins, a subclass of natural products, have long been thought to play 

an important role in the physiology of living organisms. Many essential 

processes in the human body rely on the availability of vitamins. While 

there is little dispute over the importance of vitamins, their precise mode 

of action that manifests into health benefits often remains elusive. 

However, this is not surprising, as understanding the underpinnings of a 

biological effect of a small molecule requires knowledge of its 

biomolecular targets. Zeroing in on the precise mode of action of many 

vitamins is made more complicated by the fact that they can come in 

various forms and induce a range of physiological responses. Vitamin E 

is a good example of such complexity. Vitamin E is an essential lipid-

soluble vitamin and an important macronutrient that has long been 

thought to have strong antioxidant effects without causing major toxicity 

in humans [1-3]. Its primary activity has been attributed to its ability to 

reduce free radicals to prevent lipid peroxidation of polyunsaturated fatty 

acids [4].  

 

Vitamin E consists of 8 naturally occurring isomers: d-alpha-, d-beta-, 

d-gamma-, and d-delta-tocopherols and d-alpha-, d-beta-, d-gamma-, 

https://www.sciencerepository.org/clinical-oncology-and-research
https://www.sciencerepository.org/
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and d-delta-tocotrienols [5]. Among the constituents of vitamin E, 

tocopherols initially received a great deal of attention from the scientific 

community due to their potent antioxidant properties and their 

abundance in common food sources. However, the focus has now shifted 

toward tocotrienols, which, although rare in nature, have exhibited a 

number of physiological effects that include neuroprotective, 

antioxidant, anticancer, cholesterol-lowering, and other therapeutic 

activities [6-10]. The diversity and, at the same time, specificity of 

physiological responses to tocotrienols may mean that their modes of 

action differ from the broad antioxidant activity of tocopherols. A quick 

look at the structures of tocopherols and tocotrienols reveals three double 

bonds in the farnesyl isoprenoid tail of the tocotrienols, making it the 

less flexible of the two classes of compounds (Figure 1). This additional 

restraint on the conformational freedom of tocotrienols, however, may 

be the reason for the more specific range of activities. The significantly 

reduced number of allowable conformations of tocotrienols over 

tocopherols may result in an increased affinity of tocotrienols toward a 

specific group of binding partners. If true, the activity of tocotrienols 

may go beyond that of a broad antioxidant and into the signaling realm. 

 

 

 

 

 

 

 

 

 

Figure 1: Comparison of the structures of δ-tocopherol and δ-

tocotrienol. 

 

Studies of vitamin E delta-tocotrienol (VEDT) have already proposed 

the notion that at least VEDT's anticancer activity may be attributed, not 

just to its antioxidant properties, but rather to its involvement in the 

signaling pathways of cancer [11-13]. Furthermore, VEDT was 

proposed to act as a mediating substance in antiproliferative and 

apoptotic mechanisms in carcinogenic tumor cells [5, 6, 13-17]. In this 

study, we attempt to gain insight into the possible modes of action of 

VEDT by using molecular modeling, cheminformatics and 

bioinformatics, with the goal of proposing likely binding partners of 

VEDT. 

 

As an initial step directed at pinpointing molecular target(s) of VEDT, 

we used in silico approaches to interrogate protein space for potential 

targets. With the growing prominence of in silico target discovery as a 

viable tool in research campaigns, a number of methodologies have been 

developed to take advantage of computational efficiency and storage 

capabilities of computer systems to search for potential protein targets, 

while greatly reducing the scale and scope of experimental work required 

for such exploration [18-24].  
 

Here, we used a number of different approaches to computationally 

probe for potential target proteins of VEDT. These approaches vary 

significantly yet aim to solve the same problem. This was done in part to 

decrease the effect of errors resulting from the use of any one individual 

tool. The results drawn from the consensus reached via the utilization of 

different approaches have also previously produced reliable results [25-

28]. One method, called Virtual Target Screening (VTS), is based on the 

explicit modeling of intermolecular interactions between VEDT and its 

potential targets via a docking protocol designed specifically to search 

for targets of small drug-like or natural product-like compounds [29, 30]. 

The other methods, PharmMapper and PASS (Prediction of Activity 

Spectra of Substances), take chemoinformatic approaches for proposing 

potential targets of interest [31-35]. Here, the structure of VEDT and its 

pharmacophore were compared to a database of structures and 

pharmacophores of small molecules with known biomolecular targets. 

Target proteins were then proposed based on the structural similarities 

between database compounds and VEDT. Finally, we used the binding 

site analysis tool Protein Binding Sites Detection (ProBiS) to mine the 

Protein Data Bank (PDB) for proteins containing binding pockets similar 

to those that are likely to accommodate VEDT [36-41]. 

 

Materials and Methods 

 

I VEDT Preparation 

 

Three-dimensional coordinates of VEDT and δ-tocopherol were 

downloaded from PubChem (Link 1) in a structure data file format and 

were prepared using the LigPrep (LigPrep, Schrödinger, New York, NY) 

module of the suite of molecular modeling software (Suite 2012: 

Maestro, Schrödinger, New York, NY) with default settings 

corresponding to physiological pH.  

 

II Virtual Target Screening 

 

VTS is a Web-based software application deployed on a dedicated 

computer cluster in the Chemistry Department at the University of South 

Florida [29, 30]. VTS works by comparing the docking performance of 

the molecule of interest (MOI) with a given protein against the 

performance of a calibration set of small molecules docked into the same 

protein. The National Cancer Institute Diversity Set (Set 1 provided by 

the Developmental Therapeutics Program, Cancer Treatment and 

Diagnosis, National Cancer Institute, Rockville, MD; collections are 

available at Link 2), which consists of 1990 drug-like compound 

structures, served as a calibration set and was docked into each of the 

1451 protein structures currently in the VTS library. Docking and 

scoring were performed using Glide (Glide, Schrödinger, New York, 

NY). The resulting docking score, called the GScore, is based on 

Schrödinger’s proprietary calculation of ligand/protein energetics. 

GScores are typically negative values since mutual accommodation of 

the ligand and protein reflects less disruptive energy in the complex 

versus the state when the entities are not combined. MOIs (VEDT and 

δ-tocopherol as two separate VTS runs) were then docked into each of 

the proteins in the VTS library.  

 

In addition to human protein structures, which comprise the majority of 

the VTS library (~1000), structures from other organisms ranging from 

bacteria to mammals were also included in the VTS library to allow 

future utility in other project types. Once docked, the docking 

performance of the MOI, as measured by their GScores, was compared 

to the average GScores of the calibration set compounds for each protein. 

A protein was considered a hit if the MOI’s docking score was better 

than the average docking score of the top 200 calibration compounds 

https://dtp.cancer.gov/
https://dtp.cancer.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://dtp.cancer.gov/
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docked into the protein and was of particular significance if the MOI’s 

docking score was better than the top 20 average.  

 

III PharmMapper 

 

PharmMapper uses pharmacophore mapping to identify potential targets 

for the MOI. Six pharmacophore features, including hydrophobic center, 

positively charged center, negatively charged center, hydrogen bond 

acceptor, and donor vectors and the aromatic plane of an ensemble of the 

MOI conformations, are mapped onto a library of pharmacophores 

extracted from publicly available crystal structures of protein-ligand 

complexes. A fit score between the MOI's pharmacophores and those in 

the library is then calculated, and the desired number of best-fitting 

targets, N, are suggested. The structure data file of VEDT downloaded 

from PubChem was converted to Tripos mol2 file using OpenBabel 

software [42]. The resulting mol2 file was submitted to PharmMapper 

server at (Link 3). 

 

IV Prediction of Activity Spectra of Substances 

 

Prediction of Activity Spectra of Substances (PASS) predicts the 

biological activity of the MOI based on the “multilevel neighborhoods 

of atoms” structural descriptors of compounds and a training set of 

structure-activity relationship (SAR) data for over 60,000 chemical 

substances (SAR Base) [43]. For each biological activity, based on the 

similarity of multilevel neighborhoods of atoms descriptors of the MOI 

and the substances in the SAR Base, PASS outputs two probabilities: the 

probability of the MOI to exhibit the activity and the probability of the 

MOI to not exhibit the activity. To execute PASS prediction, a SMILES 

chemical identifier representing VEDT 

[CC1=C2C(=CC(=C1)O)CCC(O2)(C)CCC=C(C)CCC=C(C)CCC=C(

C)C] was extracted from the PubChem entry for VEDT and submitted 

to (Link 4). 

V Protein Binding Sites Detection 

 

Protein Binding Sites Detection (ProBiS) identifies proteins structurally 

similar to the user-supplied protein of interest in the PDB. The algorithm 

behind the ProBiS server represents the entire proteins as graphs where 

vertices correspond to functional groups of surface amino acids and 

edges represent distance between these functional groups. Pairwise 

alignment of structural features of the protein of interest and the proteins 

in the PDB is then performed, with displayed results sorted by the 

statistical Z-scores and proteins most similar to protein of interest 

displayed on top. The PDB code for estrogen receptor β (ERβ) 1NDE 

was used as the input for the ProBiS search [44]. The choice of the above 

PDB code was based on results of the VTS screen. 

 

Results 

 

The VTS screens for both VEDT and δ-tocopherol have resulted in a 

number of proteins that were hits for VEDT but not for δ-tocopherol 

(Table 1). According to VTS, ERβ (PDB code 1NDE) was a top hit for 

VEDT, although not for δ-tocopherol (Figure 2). Thirty-three other 

proteins were also predicted as potential hits for VEDT but not for δ-

tocopherol. This is consistent with experimental findings that support 

binding of VEDT to ERβ [8, 12]. Moreover, some patterns or at least 

consistencies could be observed by looking at the VTS hit list. In 

particular, a number of hormone and nuclear receptors were shown in 

the proposed target list. This is not surprising, however, as a ProBis 

search for binding sites similar to the ERβ revealed that the binding sites 

of a number of proteins such as Rxr-like protein, retinoic acid receptor 

Rxr-α, progesterone receptor, and others are indeed quite similar (Table 

2). 

 

 

 

Table 1: VEDT and δ-tocopherol VTS results. 

[Native ligand] Protein PDB Code VEDT Result δ-tocopherol Result 

[Mon]Estrogen receptor beta 1NDE Hit* Not a Hit 

[ZEB]Cytidine deaminase 1CTU Hit* Hit 

[MOF]Progesterone receptor 1SR7 Hit* Hit 

[Proflavin]Alpha-thrombin 1BCU Hit Not a Hit 

[CL3]Cell division protein zipA 1Y2G Hit Not a Hit 

[D91]Coagulation factor x- heavy chain 1WU1 Hit Not a Hit 

[SRL]Orphan nuclear receptor pxr 1ILH Hit Not a Hit 

[_U]Cytidine deaminase 1AF2 Hit Hit 

[TTB]Retinoic acid receptor beta 1XAP Hit Not a Hit 

[442]Thyroid hormone receptor beta-1 1R6G Hit Not a Hit 

[L79]Retinoic acid receptor rxr-alpha 1RDT Hit Not a Hit 

[STR]Igg1-kappa db3 fab (light chain) 1DBB Hit Not a Hit 

[E1P]Peptidyl-prolyl cis-trans isomerase a 1W8M Hit Not a Hit 

[AO5]Methionine aminopeptidase 2 1R58 Hit Not a Hit 

[SDK]Cathepsin K 1AU0 Hit Not a Hit 

[FSN]Thrombin light chain 1OYT Hit Not a Hit 

[R11]Coagulation factor x 1G2M Hit Not a Hit 

[HEM]albumin (no iron) 1N5U Hit Not a Hit 

[ANO]Igg1-kappa db3 fab (light chain) 1DBK Hit Not a Hit 

[L10]Mitogen-activated protein kinase 14 1W82 Hit Not a Hit 

[AB8]Integrin alpha-I 1XDG Hit Not a Hit 

http://www.lilab-ecust.cn/pharmmapper
http://www.pharmaexpert.ru/passonline/predict.php
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[FPP]Protein farnesyltransferase 1FPP Hit Not a Hit 

[IGN]Prothrombin 1K21 Hit Not a Hit 

[DHZ]Cytidine deaminase 1CTT Hit Not a Hit 

[MSC]HIV-1 protease 1D4J Hit Not a Hit 

[L08]Integrin alpha-I 1RD4 Hit Not a Hit 

[CI1031(Z34)]Coagulation factor XA 1FJS Hit Not a Hit 

[BLN]Cathepsin s 1MS6 Hit Not a Hit 

[AIH]Estrogen receptor 1XP1 Hit Not a Hit 

[CMB]Blood coagulation factor xa 1LPZ Hit Not a Hit 

[RTR]Coagulation factor xa- heavy chain 1NFY Hit Not a Hit 

[EST]Estradiol receptor 1QKT Hit Not a Hit 

[STU]Tyrosine-protein kinase zap-70 1U59 Hit Not a Hit 

[Palmitate]Lipocalin beta-lactoglobulin 1B0O Hit Hit 

[AIU]Estrogen receptor 1XP6 Hit Not a Hit 

[AAY]Integrin alpha-I 1XDD Hit Not a Hit 

[HYC]Type117 beta-hydroxysteroid dehydrogenase 1I5R Hit Not a Hit 

[CIU]Epoxide hydrolase 1EK1 Hit Not a Hit 

[165]Prothrombin 1SB1 Hit Hit 

[CIU]Epoxide hydrolase 2-cytoplasmic 1VJ5 Hit Hit 

[HYF]Orphan nuclear receptor pxr 1M13 Hit Hit 

[337]Map kinase 14 3CTQ Hit Hit 

Hit: proteins into which an MOI docked with a score that outperformed the top 200 molecules of the calibration set; Hit*: top hits (proteins into which an 

MOI docked with a score that outperformed the top 20 molecules of the calibration set). 

 

Table 2: Results of the ProBis query based on the PDB ID 1NDE input structure. 

PDB ID Protein Name 

2j7y ESTROGEN RECEPTOR BETA 

3uud ESTROGEN RECEPTOR 

3ltx ESTROGEN RECEPTOR 

2e2r ESTROGEN-RELATED RECEPTOR GAMMA 

3mnp GLUCOCORTICOID RECEPTOR 

2q1h ANCCR 

1xiu RXR-LIKE PROTEIN 

4fne STEROID RECEPTOR 2 

3k6p STEROID HORMONE RECEPTOR ERR1 

1g2n ULTRASPIRACLE PROTEIN 

4e2j ANCESTRAL GLUCOCORTICOID RECEPTOR 2 

3vhv MINERALOCORTICOID RECEPTOR 

1t7r ANDROGEN RECEPTOR 

2p1t RETINOIC ACID RECEPTOR RXR-ALPHA 

3ry9 ANCESTRAL GLUCOCORTICOID RECEPTOR 1 

1z5x ULTRASPIRACLE PROTEIN (USP) A HOMOLOGUE OF RXR 

3dzu RETINOIC ACID RECEPTOR RXR-ALPHA 

1sr7 PROGESTERONE RECEPTOR 

3plz FTZ-F1 RELATED PROTEIN 

1hg4 ULTRASPIRACLE 

1lbd RETINOID X RECEPTOR 

3eyb NUCLEAR HORMONE RECEPTOR RXR 

4iqr HEPATOCYTE NUCLEAR FACTOR 4-ALPHA 

2gl8 RETINOIC ACID RECEPTOR RXR-GAMMA 

2q60 RETINOID X RECEPTOR 

4j5x RETINOIC ACID RECEPTOR RXR-ALPHA, NUCLEAR RECEPTOR COACTIVATOR 1 
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1lv2 HEPATOCYTE NUCLEAR FACTOR 4-GAMMA 

3dzu PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA 

3kmr RETINOIC ACID RECEPTOR ALPHA 

The list reveals structures in the Protein Data Bank that contain binding site similar to that of ERβ as represented by the structure under the PDB ID 1NDE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Docked pose of VEDT as identified by VTS. VEDT, coloured 

in magenta, forms hydrogen bonds (yellow dashed lines) with Glu-305 

and Arg-346. 

 

PharmMapper prediction resulted in 300 proposed pharmacophores, 

with those fitting the flexible alignment with VEDT ranked on top. These 

results were examined for consistency with the best VEDT hits from the 

VTS screen. Based on the pharmacophore derived from the PDB 

structure 1NDE, ERβ, which was the best hit in the VTS screen, was 

ranked 51. 

 

PASS prediction resulted in 500 proposed activities, which VEDT 

statistically is more likely to exhibit than not. The results were ranked by 

the probability that VEDT exhibits a given activity. Similarly, these 

results were examined for consistency with the VTS screen and 

PharmMapper prediction.  

 

According to the PASS prediction, there are several activities related 

either to estrogen modulation or ERβ specifically (Table 3). Among the 

estrogen-related activities, VEDT is likely to serve as an estrogen 

antagonist with the highest probability, followed by ERβ antagonist, 

followed by estrogen agonist, followed by ERβ agonist. Therefore, 

VEDT is more likely to serve as an antagonist of estrogen and ERβ 

activity rather than their agonist.  

 

Table 3: PASS prediction results. 

Rank Pa Pi Activity 

213 0,177 0,022 Estrogen antagonist 

234 0,148 0,024 Estrogen receptor beta antagonist 

247 0,140 0,026 Estrogen agonist 

371 0,048 0,021 Estrogen beta receptor agonist 

Predicted activities with relation to the estrogen modulation or action of 

ERβ. Rank: overall PASS rank of this activity by VEDT; Pa: Probability 

that VEDT exhibits the given activity; Pi: Probability that VEDT does 

not exhibit the given activity. 

Discussion 

 

I Consensus Between Computational Studies 

 

We identified potential molecular targets of VEDT via a combination of 

molecular modeling (docking), cheminformatics (SAR) techniques, and 

bioinformatics in the form of binding site analyses. Our results were 

consistent in identifying ERβ as a potential target of VEDT. All three 

approaches (VTS, PharmMapper, and PASS) identified ERβ modulation 

as one of the potential activities of VEDT. In particular, with VTS, ERβ 

was identified by PDB ID 1NDE as a top target from a list of 1451 

protein structures. Although PharmMapper and PASS algorithms 

operate on a substantially larger data space, both identified ERβ as one 

of the top potential targets, although results did not rank it as high as 

with VTS. In addition, PharmMapper exhibited consistency in 

preference toward the conformation of the ERβ represented by 1NDE, 

suggesting a possible antagonistic mechanism of action [12, 44]. The 

hypothesis of the antagonistic mode of action can also be favored based 

on the results of PASS, which favored an antagonistic activity of VEDT 

toward ERβ than that of an agonistic. 

 

II Consistency with Experimental Data 

 

Although no experimental data were considered during the initial VTS 

screening of VEDT, a subsequent literature search revealed that 

Comitato and colleagues had performed both in vitro binding analyses 

and molecular docking studies to identify a high-affinity interaction 

between VEDT and ERβ, which was the first reported evidence of such 

an association [11, 12]. The consistency of experimental data with the 

computational approaches reported in this work is encouraging and gives 

validity to the use of tools such as VTS as an initial step to probe for 

potential molecular targets of compounds with an unknown mode of 

action. In addition, the techniques described in this work allow for 

additional inferences regarding the precise modulating effects of the 

MOI on its target. Although Comitato et al., based on the docking 

studies, favored an agonistic mode of action and seemed to contradict 

the preference toward an antagonistic activity favored by our results, the 

combination of different approaches reported here can be beneficial in 

facilitating the investigation of the true mode of action of the MOI. 

 

Overall, the use of VTS as a first step, particularly in combination with 

other computational methods for consensus, is a viable strategy in 

helping to identify potential targets of natural products and other 

chemical substances before proceeding with extensive experimental 

work. Moreover, utilization of bioinformatics approaches like ProBis 

can help gain additional insight into potential targets and help identify 

structures for further inclusion into the VTS and cheminformatics 

screens. This multipronged consensus approach may prove especially 

valuable in cases where it is not feasible or is otherwise prohibitive to 

conduct experimental studies to address this question.  
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Computational approaches in drug discovery and development have 

faced skepticism in the past since, in some cases, needed virtual protein 

structures were not available or of poor resolution. In addition, there 

have been difficulties in developing accurate scoring algorithms for 

compound docking in virtual screening and difficulties accounting for 

protein flexibility (e.g. active site dynamics). Experimental screening 

has been considered more reliable since it is performed in a relevant in 

vitro or even in vivo setting. But virtual protein availability has greatly 

improved, protein conformational dynamics can be modeled with some 

accuracy, HPC (parallel processing on clusters) is more readily available 

and available virtual compound libraries provide greater breadth of 

chemical space to test (e.g. the ZINC databases).  

 

When we consider virtual screening and/or VTS as a first pass at 

screening, compared to experimental screening, the accuracy is about the 

same or even better with the virtual approaches. Virtual is certainly the 

cheaper and faster approach to find “hit” compounds in virtual screening 

or to find “hit” proteins in VTS. VTS attained 72% accuracy in a test 

case of kinases and known kinase inhibitors with our prototype VTS 

system [Santiago, et al., 2012] and we believe VTS can be improved to 

80-90% accuracy with planned improvements, such as incorporating 

machine learning to track protein promiscuity to down-weight proteins 

that tend to bind many compounds or incorporating low-mode 

vibrational analysis that allows the virtual protein/ligand complex more 

flexibility and in vivo-like dynamics. Experimental approaches can be 

costly and are hampered sometimes by poor availability of physical 

protein and viable assays. And experimental work can have issues with 

individual compounds such that we consider the accuracy of 

experimental approaches, as a first pass at screening, to be around 70%.  

 

Experimental assaying can be affected by: 1) cell permeability; 2) 

compound solubility; 3) compound concentration; 4) proper solvents & 

buffers; 5) protein availability; 6) protein degradation; 7) potential 

modifications, degradation or sequestration of the MOI; 8) technical 

competency (e.g. pipetting errors) and availability of validated assays, 

reagents and equipment; 9) proper analysis and interpretation of results. 

Commercial services that test compounds against a panel of related 

protein targets (e.g. kinase panels) can be used but they are expensive 

and services that have comprehensive protein collections are an 

exception rather than the rule.  

 

Typically, in experimental screening, 14% of compounds may be 

insoluble and 30-40% have poor solubility [45, 46]. So, by comparison 

between computational and experimental for a first pass, the accuracy of 

computational screening is most encouraging. With VTS, compound 

concentration, purity and solubility of the virtual MOI and protein 

structures are irrelevant as are degradation and aberrant modifications of 

the virtual structures. Also, the virtual MOI with 100% solubility, has 

zero toxicity, zero photosensitivity and maintains absolute 

stereochemistry (i.e. no racemic drift). Of course, VTS results need 

experimental confirmation but the experimental work is greatly reduced 

by the VTS filtering out insignificant proteins and by virtual screening 

filtering out irrelevant compounds. Later in drug development, solubility 

and permeability issues of a compound, which can be interrelated 

depending on the intended therapeutic context, can be addressed in 

compound optimization with experimental assays and computational 

modeling, including additional VTS runs.   
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