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A B S T R A C T 

Background: Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous hematological 

malignancy and relapse is the main reason for the poor therapeutic effect and low survival rate. 

Bioinformatic technology could screen out relative genes that promote the recurrence of AML, providing a 

theoretical basis for further improving the precision stratification treatment of AML. 

Methods: In this study, gene expression profiles of Dataset Acute Myeloid Leukemia (OHSU, Nature 2018) 

and GSE134589 were downloaded from cBioPortal and GEO, respectively. R software and limma packages 

were used to identify the DEGs and then run GO enrichment, KEGG pathway, and PPI network. 

CIBERSORTx was used to enumerate tumor-infiltrating immune cells. Prognosis-related genes were 

selected by univariate and multivariate Cox proportional hazards regression analyses and the expression of 

them were verified by GEPIA. Kaplan-Meier curve analysis could compare the survival time. ROC curve 

analysis was performed to predict the value of the selected genes.  

Results: Functional analysis showed that the up-regulated DEGs were strikingly enriched in Cytokine-

cytokine receptor interaction and positive regulation of cytokine production, and the down-regulated DEGs 

in the regulation of cell-cell adhesion, TNF signaling pathway. CIBERSORTx analysis revealed that the 

immune response of AML acted as an intricate network and proceeded in a tightly regulated way. Cox 

analysis showed that ALDH1L2, KLK1, and LRRN2 were correlated with AML prognosis.  

Conclusion: ALDH1L2, KLK1, and LRRN2 are prognosis-related genes in AML, which may, together with 

some immune pathways, induce poor prognosis and can be used as potential biomarkers in AML treatment. 

 

                                                                                     © 2021 Baoan Chen. Hosting by Science Repository. 

Introduction 

 

Acute myeloid leukemia (AML) is a clinically and genetically 

heterogeneous disease characterized by malignant clonal proliferation of 

myeloid progenitors in the hematopoietic system, resulting in the 

accumulation of leukemic blasts in the bone marrow (BM) and blood [1]. 

Traditional chemotherapy combined with hematopoietic cell 

transplantation (HCT) as a fundamental strategy for AML has changed 

significantly in the past few years, on account of the U.S. Food & Drug 

Administration (FDA) has approved several new drugs for AML, 

including Glasdegib, Venetoclax, and others [2-7]. Notwithstanding the 

above, deaths due to disease persistence and recurrence remain constant, 

and overall survival for AML patients remains poor. About 20-30% of 

patients never achieve complete remission (CR) after first-line intensive 

treatment and 50% relapse after CR accomplishment [1, 8]. 

 

In recent years, in addition to the advent of new drugs that profoundly 

affect the treatment landscape of AML, the use of cytogenetic 

abnormalities and gene mutations for risk stratification and prognosis 

assessment has also been further improved with the deepening 

understanding of the pathogenesis of AML [9-12]. The 2017 edition of 

the European LeukemiaNet (ELN) recommendations for diagnosis and 

management of AML in adults, including a revised version of the risk 

stratification by genetics. For example, monosomal karyotype, RUNX1, 

ASXL1, and TP53 mutations have been added as features of the adverse-

risk group due to their independent associations with risk [13-17]. 

However, according to this proposal, approximately 30% of AML 

https://www.sciencerepository.org/clinical-oncology-and-research
https://www.sciencerepository.org/
mailto:101006513@seu.edu.cn
http://dx.doi.org/10.31487/j.COR.2021.06.01
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patients are still listed as having intermediate-risk, many of whom do not 

carry prognostic nuclear abnormalities or gene mutations, and the choice 

of the ideal strategy remains unclear. Therefore, the current risk 

stratification and prognosis assessment of AML patients need to be 

further improved. Considering that the incidence of AML relapse 

remains one of the major problems in AML treatment and that patients 

with relapsed AML respond less to treatment and have poorer overall 

survival. We selected 709 adult AML patients from TCGA and GEO 

datasets, including those with de novo AML and relapsed AML patients, 

to screen relapse-related genes and explore their influence on the 

prognosis of AML patients so as to provide a theoretical basis for 

hierarchical management of relapsed AML. 

 

Notably, AML is composed not only of leukemic cells but also of non-

leukemic cells, in which the immune microenvironment may play an 

important role in promoting the development and recurrence of AML 

[18]. In recent years, several promising preclinical and clinical 

immunotherapies, including immune checkpoint inhibitors and active or 

passive immunotherapies, have shown promising results in a variety of 

cancers, but the effect is not obvious for AML, suggesting that AML has 

a unique mechanism to evade treatment [19-23]. To better understand 

the role of immunity in AML, we summarized the number of immune 

cells in AML from the perspective of the diversity and nature of 

infiltrating immune cells in AML. CIBERSORTx is a multifunctional 

transfer algorithm based on gene expression that quantifies cell 

components from gene expression profiles of large tissues [24]. In this 

study, we used CIBERSORTx to enumerate 22 different functional 

immune cell types in AML to define the landscape of relapsed AML and 

de novo AML. More importantly, we studied its relationship and 

survival with other immune cells. We hope this study will provide some 

important information about the complex mechanisms in the incidence 

of AML relapse and help to improve treatment strategies for AML. 

 

Materials and Methods 

 

I Dataset Collection  

 

The gene expression profile of Dataset GSE134589 was downloaded 

from Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/). This dataset contains the RNA-

sequencing profiling of 432 acute myeloid leukemia samples. Except for 

complete remission patients, we included 368 diagnosis samples and 35 

relapsed samples to compare the mRNA levels of relapsed patients and 

those with de novo. Gene expression profile of Dataset Acute Myeloid 

Leukemia (OHSU, Nature 2018) was downloaded from cBioPortal for 

Cancer Genomics (cBioPortal) database (http://www.cbioportal.org/). 

This dataset contains 672 acute myeloid leukemia samples (with 454 

matched normals) and both provided RNA sequencing data and clinical 

information. A total of 266 de novo and 40 relapsed AML patients were 

included in the analysis, excluding M3 leukemia (according to the 

French-American-British (FAB) classification systems).  

 

II Identification of Differentially Expressed Genes (DEGs) in 

Relapsed and de novo AML Patients  

 

Ensemble BioMart databank GRCh37.p13 version supplied annotations 

to selected genes, and differentially expressed genes (DEGs) between 

relapsed and de novo patients were defined as those genes with |log2FC| 

> 1.5, p-value < 0.05. Package ‘limma’ was used to screen out the DEGs 

between relapsed and de novo AML samples. The volcano plot was 

completed by the ‘ggpubr’ and the ‘ggthemes’ package in R 4.0.1. 

 

III Functional and Pathway Enrichment Analysis  

 

To examine a complete collection of functional annotations of DEGs, 

Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway analysis were performed by 

using the ‘cluster Profiler’ R package. The ‘cluster Profiler’ R package 

was also used for the visualization of GO and KEGG results. p-

value<0.05 was set to be significant. ‘Cluster Profiler’ is a package of 

‘Bioconductor’, it implements methods to investigate and visualize 

functional profiles (GO and KEGG) of gene and gene clusters. The 

download code is “BiocManager::install("Cluster Profiler")”. 

 

IV Protein-Protein Interaction Network (PPI) Analysis and 

Visualization  

 

The STRING online database provided PPI (protein-protein 

communication) information (https://string-db.org/). We used the 

STRING database to investigate the interactions between DEGs and 

visualize the results using Cytoscape software. Cytoscape MCODE 

plug-in provided access to select the significant modular of PPI network. 

The patterns default parameters as follows: node density cutoff=0.1, 

node score cutoff=0.2, degree cut off=2, k-core=2, and max. depth=100. 

For genes in the hub module, we use ClueGO+CluePedia for functional 

enrichment analysis.  

 

V Enumeration of Tumor-Infiltrating Immune Cells  

 

CIBERSORTx is a powerful immune infiltrate analysis tool that can 

distinguish between each immune cell subtype and precisely calculate 

and quantify different immune cell proportions. The obtained p-value 

indicates the statistical significance and can help filter out samples with 

insignificant efficiency. Before running CIBERSORTx, the gene 

expression data downloaded from cBioPortal and GEO datasets must be 

processed as described by Binbin Chen et al. [25]. Then, the data was 

uploaded to the CIBERSORTx internet portal with some permutations 

being set to 100 (https://cibersortx.stanford.edu/). Related proportions of 

22 infiltrating immune cells together with CIBERSORTx metrics of 

CIBERSORTx P-value, Pearson correlation coefficient, and root mean 

squared error (RMSE) were evaluated for each sample concurrently. 

Samples with P < 0.05 in CIBERSORTx analysis result were used in 

further analysis. Mann-Whitney U test was used to compare differences 

in immune cell subtypes in relapsed and de novo groups.  

 

VI Construction of a Prognostic Signature  

 

Univariate Cox proportional hazards regression analysis was performed 

to investigate the influence of each gene on overall survival. With the 

cutoff of p<0.05, DEGs were considered to be prognosis-related. 

Multivariate Cox proportional hazards regression analysis was further 

performed on the prognosis-related genes. Cox proportional hazards 

regression with a p<0.05 was set for risk score of developing relapsed 

AML in the patient. According to the mean risk score, patients were 

https://www.ncbi.nlm.nih.gov/geo/
http://www.cbioportal.org/
https://string-db.org/
https://cibersortx.stanford.edu/
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divided into low and high-risk groups. The Kaplan-Meier curve analysis 

was further conducted to estimate the relationship between the risk score 

and overall survival. p<0.05 was a significant cutoff. Time-dependent 

receiver operating characteristic (ROC) curve analysis was also 

performed to evaluate the 4-year predictive value of the outcomes, and 

the area under the curve (AUC) of the ROC curve was calculated to 

examine the classifier performance. 

 

VII Validation of Real Prognosis-Related Genes 

 

The prognosis-related genes were finally validated in Gene Expression 

Profiling Interactive Analysis (GEPIA: http://gepia.cancer-pku.cn/). 

Differential expression of AML patients and their normal samples were 

compared by using the GEPIA database. Genes with statistically 

significant differences in expression were defined as the ‘real’ 

prognosis-related genes.  

 

VIII Statistical Analysis  

 

The log1.5FC values of the computationally selected mRNAs were 

already normalized by R package. The Student’s t-test was used to 

compare gene expression between relapsed and de novo AML groups. 

Univariate and multivariate Cox regressions were conducted by using 

the ‘survival’ package in R package. The OS between different groups 

was compared by Kaplan-Meier analysis with the log-rank test. All 

statistical analyses were performed with R software, and statistical 

significance was set at probability values of p < 0.05.  

 

Results 

 

I Identification of DEGs 

 

Complete clinical data and RNA sequence data of 306 non-M3 AML 

patients (266 patients with de novo AML and 40 patients with 

relapsed/refractory AML) and 403 archival BM samples (n=368 with de 

novo AML and n=35 with relapsed/refractory AML) from the GEO 

database were contained in our present study. The subtypes were 

classified according to the FAB classification systems in which M3 

subtype was removed from the present analysis regarding the separate 

properties. Through the limma software package, 451 and 55 DEGs from 

OHSU and GSE134589 were extracted, respectively. The differential 

expression of varied genes from two sets of sample data included in each 

of the two datasets is shown in (Figures 1A & 1B). Results showed that 

a total of 451 DEGs were detected in OHSU dataset, including 86 

downregulated genes (logFC< - 1.5) and 365 up-regulated genes 

(logFC> 1.5), and 55 DEGs were identified in GSE134589, including 18 

downregulated genes (logFC< - 1.5) and 37 up-regulated genes (logFC> 

1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Volcanic maps of all genes. A) Volcanic maps of GSE134589 dataset; B) Volcanic maps of OHSU dataset. Red spot, the expression is up-

regulated; Blue spot, the expression is down-regulated; Gray spot, not significantly dysregulated. 

http://gepia.cancer-pku.cn/
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II Functional and Pathway Enrichment Analysis of DEGs 

 

The results of functional and pathway enrichment analysis are shown in 

(Figures 2A-2E). Gene Ontology (GO) analysis of up-regulated DEGs 

in OHSU showed that DEGs were related to leukocyte migration, the 

regulation of ion transmembrane transport, negative regulation of cell 

activation, T cell-mediated immunity, and positive regulation of 

interleukin-8. Gene Ontology (GO) analysis of down-regulated DEGs of 

OHSU showed no functional or pathway enriched. Gene Ontology (GO) 

analysis of down-regulated DEGs of the GSE134589 dataset showed that 

regulation of cell-cell adhesion, leukocyte proliferation, positive 

regulation of T cell activation, and proliferation events were mostly 

enriched. Among the functional and pathway enrichment analysis, the 

Cytokine-cytokine receptor interaction events, TNF-signaling pathway, 

and RIG-I-like receptor signaling pathway were enriched most. Gene 

Ontology (GO) analysis of up-regulated DEGs of GSE134589 dataset 

showed that positive regulation of cytokine production, leukocyte 

migration, lymphocyte and mononuclear cell proliferation, as well as 

cytokine biosynthetic and metabolic process, were mostly enriched. 

Among the functional and pathway enrichment analysis, Cytokine-

cytokine receptor interaction, hematopoietic cell lineage, viral protein 

interaction with cytokine and cytokine receptor, Toll-like receptor 

signaling pathway, and Th17 cell differentiation were enriched most. 
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Figure 2: Functional and pathway enrichment analysis of DEGs. A) The GO biological process enrichment analysis of up-regulated DEGs of OHSU. B-E) 

The bubble chart showed the top 10 pathways with a significant difference in GSE134589. B) The GO biological process enrichment analysis of down-

regulated DEGs. C) The GO biological process enrichment analysis of up-regulated DEGs. D) The KEGG enrichment analysis of down-regulated DEGs. 

E) The KEGG enrichment analysis of up-regulated DEGs. 
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III PPI Network and Analysis on Clusters 

 

STRING mapped 451 DEGs of OHSU and 55 DEGs of GSE134589 into 

two PPI networks containing 278, 54 nodes and 863, 352 edges, 

respectively. (Figures 3A & 3B). Then MCODE was used to discover 

clusters in the network. Four clusters (the top two significant modules of 

each dataset) were selected for GO term and KEGG pathway enrichment 

analysis. Among them, cluster 1 of OHSU contained 22 nodes and 102 

edges, with the highest score (Figure 3C), cluster 2 contained 11 nodes 

and 25 edges (Figure 3D), cluster1 of GSE134589 contained 20 nodes 

and 66 edges (Figure 3E), cluster 2 of GSE134589 contained 13 nodes 

and 58 edges (Figure 3F). We then combined the 4 clusters of two data 

sets for ClueGo analysis. The results show that the positive regulation of 

mononuclear cell proliferation, leukocyte migration, cytokine 

biosynthetic process, lymphocyte proliferation, phospholipase activity, 

and T cell costimulation events were mostly enriched (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A) The PPI analysis of OHSU at STRING (Link). B) The PPI analysis of GSE134589 at STRING. C) & D) Cluster analysis of the OHSU PPI 

network [C). Cluster1; D) Cluster2]. E) & F) Cluster analysis of the GSE134589 PPI network [E) Cluster1; F) Cluster2]. 

https://string-db.org/cgi/input.pl
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Figure 4: GO and KEGG analyses on the hub modules. 

 

IV The Landscape of Immune Infiltration in Relapsed and de 

novo AML Patients 

 

We first exhibited the landscape of 22 immune cell subpopulations 

infiltration in AML, and subsequently, we investigated the difference 

between relapsed and de novo patients using the CIBERSORTx 

algorithm. The portion of immune cells varied distinctly between groups. 

Compared with de novo AML, relapsed AML contained a greater 

number of neutrophils. However, plasma cells, T cells CD4 naive, 

macrophages M2, T cells CD4 memory resting, dendritic cells resting, 

mast cells resting, and eosinophils fractions were relatively lower (Table 

1, Figure 5A). The proportions of 22 TIICs were weakly-to-strongly 

correlated in AML. T cells CD4 naive and T cells gamma delta showed 

the strongest positive correlation (Pearson correlation=0.34), while T 

cells CD4 naive and monocytes showed the strongest negative 

correlation (Pearson correlation=0.28). Altogether, these results 

revealed that the immune response of AML acted as an intricate network 

and proceeded in a tightly regulated way (Figure 5B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The difference of immune infiltration between de novo AML and relapsed AML. A) Violin plot visualizing the differentially infiltrated immune 

cells; B) Correlation heatmap depicting correlations between infiltrated immune cells in AML. 
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Table 1: Comparison of 22 TIICs proportion between de novo and relapsed AML. 

Cell type CIBERSORT fraction in % of all infiltrating immune cells  

(mean± SD) 

de novo AML                               Relapsed AML                                           P value 

 

B cells naive  0.042±0.060 0.069±0.077 0.111  

B cells memory  0.017±0.033 0.015±0.023 0.741  

Plasma cells  0.036±0.043 0.018±0.025 0.002  

T cells CD8 0.021±0.033 0.034±0.053 0.245  

T cells CD4 naive 0.060±0.071 0.029±0.047 0.006  

T cells CD4 memory resting 0.019±0.044 0.035±0.053 0.150  

T cells CD4 memory activated 0.005±0.011 0.009±0.021 0.303  

T cells follicular helper 0.003±0.010 0.009±0.017 0.124  

T cells regulatory (Tregs) 0.003±0.017 0.007±0.023 0.443  

T cells gamma delta 0.026±0.033 0.030±0.062 0.747  

NK cells resting 0.076±0.100 0.107±0.121 0.229  

NK cells activated 0.029±0.054 0.034±0.060 0.711  

Monocytes 0.370±0.252 0.301±0.210 0.136  

Macrophages M0 0.009±0.019 0.011±0.037 0.801  

Macrophages M1 0.017±0.045 0.018±0.054 0.890  

Macrophages M2 0.015±0.029 0.005±0.013 0.002  

Dendritic cells resting 0.002±0.001 0.001±0.003 0.788  

Dendritic cells activated 0.008±0.027 0.010±0.027 0.749  

Mast cells resting 0.167±0.187 0.122±0.180 0.245  

Mast cells activated 0.037±0.090 0.047±0.109 0.684  

Eosinophils 0.012±0.037 0.001±0.002 <0.001  

Neutrophils 0.025±0.054 0.088±0.144 0.045  

The significance of bold values is p < 0.05. 

 

V Identification of Clinical Implications of TIICs Subsets 

 

Owning to the missing survival data in included GEO datasets, we 

investigated whether there was a statistical relationship between specific 

TIICs and AML overall survival obtained from OHSU by univariate Cox 

regression using the survival R package. After a restriction of the 

CIBERSORTx filter to P < 0.05, there were 53 patients with available 

data on overall survival. Only two meaningful TIICs subsets were 

selected. T cells CD4 memory activated (HR=22492961.769; z=2.130; 

P=0.033) and macrophages M2 (HR=1575810.697; z=1.983; P=0.047) 

were both significantly associated with a poor outcome (Figure 6A). The 

corresponding Kaplan-Meier curve is depicted in (Figure 6B). The 

distribution of risk score, survival status was also analysed (Figure 6C). 
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Figure 6: Clinical implications of TIICs subsets. A) Forest map of multivariate cox regression. B) Survival plots of the median of immune cell 

subpopulations showed no statistical significance. C) The risk scores according to TIICs subsets for all patients in the OHSU cohort are plotted in ascending 

order and marked as low risk (blue) or high risk (red), as divided by the threshold (vertical black line). 

 

VI Identification of Prognostic Signature 

 

Of the OHSU data containing patient clinical information with 451 

DEGs, the univariate Cox proportional hazards regression analysis 

screened out 27 prognostic-related genes. We then used the GEPIA 

database to verify the expression levels of obtained genes and screened 

5 genes were significantly different between AML patients and healthy 

controls (Figures 7A-7E); multivariate Cox proportional hazards 

regression analysis was further performed on. The 5 genes, which 

screened ALDH1L2, KLK1, and LRRN2. The risk score for predicting 

overall survival was calculated as follows: Risk score=0.344* 

ALDH1L2+0.309* KLK1+ 0.254* LRRN2 (Figure 8A). According to the 

risk score, patients were divided into low- and high-risk groups. Survival 

analysis showed that low-risk patients had longer overall survival than 

high-risk patients (Figure 8B). The distribution of risk score, survival 

status was shown in (Figure 8C). The AUC of the 4-year survival TIME 

ROC curve analysis was 0.73 (Figure 8D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The expression of the prognosis-related genes between AML patients and their normal samples. A) LRRN2 B) ALDH1L2. C) KLK1. D) PROS1. 

E) PSAT1. Red represents AML samples; Blue represents healthy control samples. 
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Figure 8: Survival prognosis model on the 3 prognosis-related genes. A) Forest map of multivariate cox regression. B) Survival analysis showed that the 

patients in the high-risk group had worse overall survival than those in the low-risk group in the OHSU cohort. C) The risk scores according to prognosis-

related genes for all patients in the OHSU cohort are plotted in ascending order and marked as low-risk (blue) or high-risk (red), as divided by the threshold 

(vertical black line). D) ROC analysis was performed to calculate the most optimal cutoff value to divide the AML patients into high-risk and low-risk 

groups. 

 

Discussion 

 

In this study, we screened out AML relapse-related DEGs based on 

TCGA and GSE134589 datasets. The up-regulated DEGs were 

strikingly enriched in the immune signaling pathway, Cytokine-cytokine 

receptor interaction, toll-like receptor signaling pathway, and Th17 cell 

differentiation, and the down-regulated DEGs in Cytokine-cytokine 

receptor interaction, tumor necrosis factor (TNF)-signaling pathway and 

RIG-I-like receptor signaling pathway. We further screened out 332 hub 

DEGs, most of which were enriched in the positive regulation of 

mononuclear cell proliferation, leukocyte migration, cytokine 

biosynthetic process, lymphocyte proliferation, phospholipase activity, 

and T cell costimulation events. Cytokine-cytokine receptor interaction 

plays a significant role in the pathogenesis of various types of 

lymphomas [26]. Toll-like receptors (TLRs) and RIG-I-like receptors 

(RLRs) are protective immune guards, which can initiate signaling 

pathways completing activation of NF-kappaB, MAP kinases, and IRFs 

that manage the transcription of genes encoding type I interferon and 

other inflammatory cytokines [27, 28].  

 

Previous studies have delineated that TLRs are in connection with 

hematopoietic damage, leading to expanded HSC proliferation and an 

increased bias toward myeloid cell differentiation, contributing its 

strength to the development of hematopoietic malignancies and bone 
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marrow failure [29-32]. This may be owing to the release of pro-

inflammatory cytokines that could form a microenvironment accessory 

to promoting tumorigenesis. Th17 cells were known as a subgroup of Th 

cells showing pro-inflammatory as well as tumor-promoting qualities in 

diverse cancer types [33, 34]. The TNF-signaling pathway is a principal 

mediator of apoptosis, inflammation, and immunity, and it has been 

implicated in the pathogenesis of a broad spectrum of human diseases, 

including diabetes, cancer, and different type of inflammatory diseases 

[35]. Similarly, researchers have illustrated that regulation of 

phospholipase activity fosters the development of tumors [36]. It is not 

difficult to find that DEGs were mainly enriched in the immune 

regulation, as same as inflammation and apoptosis pathways, exhibiting 

pro-inflammatory and tumor-promoting characteristics, play an 

important role in generating a microenvironment conducive to the 

extension of tumor cells. All these findings point out the possible 

relationship between some DEGs and relapsed AML development, 

which may give a new direction for relapsed AML research. 

 

Through the enrichment of DEGs, we found that most of the genes 

related to the recurrence of AML are gathered in the immunocorrelation 

pathways. Earlier studies have also told that the immune response plays 

an essential role in the evolution and migration of various tumors, and 

immunotherapy and targeted therapy are also considered as two 

dominant agents in tumor therapy in addition to chemotherapy. 

Therefore, in this study, the CIBERSORTx algorithm was used to 

presume the percentage of 22 TIICs subsets from AML transcriptomes 

from OHSU and GSE134589 databases and to reveal distinguished 

patterns of TIICs in initial and recurrent AML, as well as the associations 

between different immune cell subsets with clinical outcomes. We 

observed notable differences in immune cell composition between 

relapsed AML and de novo AML. Compared with de novo AML, 

relapsed AML contained a greater number of neutrophils. However, 

plasma cells, T cells CD4 naive, macrophages M2, T cells CD4 memory 

resting, dendritic cells resting, mast cells resting, and eosinophils 

fractions were relatively lower.  

 

Moreover, our work validated the findings that certain immune cell 

subsets can also predict clinical outcomes besides the Immunocore. By 

univariate Cox regression analysis, we found that T cells CD4 memory 

activated and macrophages M2 are significantly associated with poor 

outcome. Paradoxically, in this study, the immune cell subpopulation, 

which forecasted poor prognosis, did not have a significantly high 

expression in relapsed AML. On the contrary, macrophages M2 

expressed lower than that of de novo AML, while T cells CD4 memory 

activated made no significant difference. Since only two data sets were 

included in this study, and only 53 patients in one data set were used for 

immune-related prognostic analysis, more clinical data will be needed to 

investigate the role of immune cell subsets in relapsed AML. It is worth 

noting that in multiple situations, the immune function may vary greatly, 

although there is no difference in the number of immune cells. 

Subsequent studies can specifically study the functions of T cells and 

macrophages in the recurrence of AML. 

 

We found the expression of ALDH1L2, KLK1, and LRRN2 were 

significantly different in relapse and de novo AML and were negatively 

related to the overall survival of the AML patients. ALDH1L2 encodes 

for a mitochondrial FDH and is involved in controlling the metabolic 

period of tetrahydrofolate (THF) in mitochondria. In recent years, the 

significance of mitochondrial metabolism in tumor cells has attracted 

more and more attention. ALDH1L2 has been shown to promote 

melanoma metastasis in vivo, and shorter survival has been reported in 

colorectal and lung adenocarcinoma studies [37-39]. KLK1 belongs to 

the serine protease family of proteolytic enzymes, and growing evidence 

suggests that many KLKs are implicated in carcinogenesis [40]. LRRN2, 

also known as GAC1, was found overexpressed in malignant gliomas 

and is a candidate for the target gene in the 1q32.1 amplicon in malignant 

gliomas [41]. In the present study, we verified the prognostic value of 

ALDH1L2, KLK1, and LRRN2 in AML, which broadens the landscape 

of ALDH1L2, KLK1, and LRRN2 research and can guide the future 

exploration into relapsed AML mechanism. 
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