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A B S T R A C T 

Background: Human tissue/organ development is a complex, highly orchestrated process, regulated in part 

by the surrounding extracellular matrix (ECM). Every complex tissue, including the retina, has a unique 

ECM configuration that plays a critical role in cellular differentiation, adhesion, migration, and maturation.  

Aim: To characterize ECM expression of human induced pluripotent stem cell-derived optic vesicles (iPSC-

OVs).  

Methods: A 3- dimensional (3D) in vitro suspension culture system was used to direct differentiation of 

human induced pluripotent stem cells (iPSCs) into optic vesicles (OVs). Stepwise differentiation of iPSCs 

into retinal progenitor cells was confirmed by sequential expression of OTX2, SOX1, SIX6, LHX2, PAX6, 

and CHX10. Expression of ECM genes in iPSC-derived OVs was analyzed by RT2 ProfilerTM PCR Array, 

whereas immunofluorescence staining was performed to detect ECM proteins in the OVs.  

Results: A number of cell adhesion molecules (CAMs) previously reported to be abundantly expressed in 

iPSCs such as E-cadherin, Intercellular adhesion molecule-1 (ICAM1), Integrin-α L, Integrin-α M, Integrin-

α 6 were downregulated while neural and retina specific CAMs including neural cell adhesion molecule 1 

(NCAM1), neural plakophilin-related armadillo repeat protein (NPRAP), Integrin-α 1 and Integrin-α 4 were 

upregulated. Several glycoproteins that have been reported to play key roles during retinogenesis, namely 

CD44, Tenascin C, Tenascin R, Neurocan, Neuroglycan C, Delta 2 Catenin, Vitronectin, and Reelin were 

also present.  

Conclusion: We have identified an array of ECM proteins that were expressed during retinogenesis. Further 

characterization of these proteins will lead to a better understanding of retinal development. 

 

 

 

                                                                          © 2021 Heuy-Ching Wang. Hosting by Science Repository. 

 

Introduction 

 

Induced pluripotent stem cells (iPSCs) are derived from adult somatic 

cells that have been reprogrammed to become pluripotent. iPSCs share 

similar properties as embryonic stem cells (ESCs), including the 

plasticity to differentiate into any somatic cell [1, 2]. Several methods 

have been used to differentiate pluripotent stem cells into various cell 

types. One of the most common methods generates uniform and size-

controlled 3-dimensional (3D) stem cell aggregates called embryoid 

bodies (EBs) that are further differentiated into organoids of interest [3, 

4]. Studies have shown that 3D EBs allow directed iPSC differentiation 

into desired cell types in a more efficient and controlled manner by 

recapitulating the key events that occur during early embryogenesis [5, 

6]. EBs help to create a microenvironment that is inducive to cell-cell 

interactions and endogenous autocrine/paracrine signaling essential for 

self-renewal and differentiation.  

https://sciencerepository.org/international-journal-of-regenerative-medicine
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Embryogenesis is a highly orchestrated process consisted of stepwise 

differentiation of pluripotent stem cells. During this process, embryos 

also start to secrete laminin and other extracellular matrix (ECM) 

molecules as early as the two-cell stage by a process called exocytosis 

[7]. As these embryonic cells further divide, each population of cells 

differentiates into tissue specific somatic cells. An EB-based 

differentiation approach has often been applied to induce in vitro 

retinogenesis of iPSCs, in which the sequential development of 

neuroectoderm specification, along with eye field and optic vesicle (OV) 

formation have been observed [8, 9]. ECM is a complex, dynamic 

network of proteins and carbohydrate molecules within the interstitial 

space and basement membrane of tissue [10, 11]. It is composed of 

different macromolecules including glycosylated proteins 

(proteoglycans), integrins, fibrous proteins and polysaccharides [10, 12, 

13]. These molecules constitute the cellular microenvironment that 

provides structural support and exert influences on cell behaviors in 

various ways [14-17]. By binding to transmembrane proteins, ECM can 

regulate the underlying intracellular signaling pathways [18]. ECM can 

also regulate cell migration and differentiation by virtue of its stiffness 

and has been shown to influence tissue morphogenesis [19, 20]. In 

addition, ECM can sequester growth factors thereby influencing cell 

growth by regulating growth factor bioavailability.  

 

ECM also plays a crucial role in degeneration/regeneration of tissue 

including retina in various diseases and injuries [21]. Several ECM 

molecules are upregulated in response to retinal damage. For example, 

Neuroglycan-C, a brain-specific chondroitin sulfate proteoglycan, has 

been shown to inhibit optic nerve regeneration after nerve crush injury 

in rats [22]. Other glycoproteins like Neurocan and CD44 are expressed 

at the outer interface of abutted retinas and inhibit neurite outgrowth 

[23]. Tenascin-C is also abundantly expressed after nerve injury which 

is important for axonal regeneration [24]. ECM remodeling also occurs 

in retinal diseases like glaucoma and diabetic retinopathy [25, 26].  

 

In this study, we used a 3D in vitro suspension culture system to direct 

differentiation of human iPSCs into OVs and examined their ECM 

composition during early events of retinogenesis. Based on the results 

described here, we report that iPSCs undergoing retinal differentiation 

in 3D produce retina-specific ECMs. Further characterization of selected 

iPSC-derived ECM proteins can lead to a better understanding of retinal 

development and shed light on the potential application of stem cell-

derived retinal organoids as a source of autologous ECM materials for 

retinal repair and regeneration. 

 

Materials and Methods 

 

I Culture and Maintenance of iPSCs 

 

Human iPSC line IMR90-1 was obtained from WiCell (Madison, WI). 

iPSCs were seeded on Matrigel-coated (Corning, NY) 6 well-plates and 

maintained in mTeSR1 medium (Stem Cell Technologies, Vancouver, 

BC, Canada) at 37°C with 5% CO2. Differentiated colonies were 

identified and removed via visual inspection using a dissecting 

microscope. Cells were manually passaged using Stempro EZPassage 

(ThermoFisher Scientific, Waltham, MA) when they reached 80% 

confluency, where approximately 40 to 50 colonies were seeded onto 

each well of the Matrigel-coated plates. iPSCs were tested for 

pluripotency via immunostaining for various pluripotency markers as 

previously described [27]. 

 

II 3D In Vitro Retinal Differentiation 

 

A retinal differentiation protocol was adapted from previous studies with 

modifications [9, 28]. Briefly, iPSCs were treated with 10 µM Rock 

inhibitor, Y-27632 (Stem Cell Technologies, Vancouver, Canada) for 

two hours, rinsed with Phosphate Buffered Saline (PBS), and dissociated 

into single cells using 0.1% Trypsin for 10 minutes. The cells were 

washed with PBS and resuspended at a density of 90,000 cells/mL in 

retinal differentiation medium containing G-MEM (ThermoFisher 

Scientific, Waltham, MA) with 20% KnockOut Serum Replacement 

(KSR) (ThermoFisher Scientific, Waltham, MA), 0.2 mM nonessential 

amino acids, 1 mM pyruvate, 0.1 mM 2-mercaptoethanol, 10 µM Y-

27632, 3 µM IWR-1-endo (Wnt inhibitor, Calbiochem, Billerica, MA) 

and antibiotic/antimycotic (ThermoFisher Scientific). These cells were 

then assembled into uniform and size-controlled EBs of 9000 cells by 

aliquoting 100 µL of the cell suspension into each well of the Sumilon 

PrimeSurface 96-well V-bottomed plates (Sumitomo Bakelite, Novi, 

MI). After 24 hours, 1 µL of Matrigel at 1% v/v was added to each well. 

Half the medium in each well was changed to fresh medium without Y-

27632 on Day 6. Cells were further cultured until Day 12. 

 

On Day 12, the EBs were collected, washed twice and resuspended in 

medium containing G-MEM with 20% KSR, 10% Fetal bovine serum 

(FBS), 1% Matrigel, 0.2 mM nonessential amino acids, 1 mM pyruvate, 

0.1 mM 2-mercaptoethanol, and 1X antibiotic/antimycotic cocktail and 

transferred to 6-well ultra-low attachment plate (Corning, Corning, NY) 

at a density of 30-40 EBs/well and cultured in suspension. Three µM 

CHIR 99021, (Wnt agonist, R&D Systems, Minneapolis, MN) and 100 

nM smoothened agonist (SAG, R&D Systems, Minneapolis, MN) were 

added to the medium on Day 15. The medium was changed to 

neuroretina medium containing DMEM/F12-Glutamax, N2 supplement 

(ThermoFisher Scientific, Waltham, MA), and 1X 

antibiotic/antimycotic cocktail on Day 18. Cell differentiation was 

continued until Day 24. 

 

III Immunofluorescence Staining of EBs During Stepwise 

Retinal Differentiation 

 

EBs were harvested on Day 8, 12, and 24 during stepwise differentiation 

and fixed in 4% paraformaldehyde (PFA). After overnight fixation, the 

EBs were immersed in 15% and 30% sucrose (in PBS) for 2 hours each 

and embedded in optimal cutting temperature (OCT) compound. 

Embedded molds were frozen gradually and then sliced into 20 µm 

sections.  

 

Cryosections were permeabilized with 0.1% Triton X-100 and incubated 

with antibodies against OTX2, SOX1, SIX6, LHX2, PAX6, or CHX10 to 

detect markers of retinal development (Table 1). Fluorophore-

conjugated secondary antibodies (Molecular Probes, Eugene, OR) were 

used for immunofluorescence detection. Cell nuclei were counterstained 

with 4, 6-diamidino-2-phenylindole (DAPI). Fluorescent images were 

acquired using a Leica TCS SP5 II confocal microscope (Leica 

Microsystems, Inc. Buffalo Grove, IL) and processed using the Image J 

software. 
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Table 1: Primary antibodies used for immunofluorescence assay. 

Antibody Type Source Dilution 

CD44 Mouse  

monoclonal 

Novus 1:100 

CHX10 Rabbit  

polyclonal 

Novus 1:100 

LHX2 Goat   

polyclonal 

Santa Cruz 1:25 

Neurocan  Mouse  

monoclonal 

ABCAM 1:50 

Neurogycan C Rabbit  

polyclonal 

ABCAM 1:300 

Pax6 Mouse  

monoclonal 

Developmental hybridoma bank 1:50 

Sox1 Goat   

polyclonal 

R&D Systems 1:40 

Six6 Rabbit  

polyclonal 

ABCAM 1:100 

Tenascin C Rabbit  

polyclonal 

ABCAM 1:150 

Tenascin R Rabbit  

polyclonal 

Novus 1:50 

 

IV RT2 ProfilerTM PCR Array Assay 

 

Total RNA was extracted from iPSCs (day 0) and iPSCs-derived OVs 

on day 24 using the RNeasy mini kit (Qiagen, Valencia, CA). RNA was 

purified with RNase-free DNase (Qiagen). The purified RNA was 

reverse transcribed to cDNA using the RT First strand kit (Qiagen). 

cDNA was mixed with the RT SYBR Green ROX qPCR mastermix and 

aliquoted into the Human Extracellular Matrix and Cell Adhesion 

Molecules RT2 ProfilerTM PCR Array (Qiagen). Applied Biosystem 7300 

RT PCR system (Applied Biosystems, Foster City, CA) was used for 

thermal cycling: segment 1 – 1 cycle: 95°C for 10 minutes, segment 2 – 

40 cycles: 95°C for 15 seconds followed by 60°C for 1 minute. Data 

were analyzed using the RT2 ProfilerTM PCR Array Data Analysis 

Webportal (Link) according to the manufacturer’s instructions. Fold 

changes in gene expression were calculated using the ∆∆Ct method. 

Expression of house-keeping genes was used to normalize the data and 

calculate ∆∆Ct values. 

 

V Immunofluorescence Staining of ECM 

 

EBs on Day 24 post-differentiation were fixed and processed for 

immunofluorescence staining following the general protocol as 

described above. Antibodies against Neuroglycan C, Neurocan, 

Tenascin C, CD44, Tenascin R, Reelin, NCAM, Delta 2 Catenin, and 

Vitronectin were used to detect expression of ECM proteins. 

Fluorophore-conjugated secondary antibodies were used for 

immunofluorescence detection. DAPI was used to counterstain cell 

nuclei. Images were acquired using a confocal microscope as previously 

described. All images were processed using the Image J software. 

 

 

 

 

 

VI Statistical Analysis 

 

Each experiment was performed in triplicates. Data were analyzed by 

Student’s t test and presented as the mean ± standard deviation (SD). A 

value of p < 0.05 was considered statistically significant. 

 

Results 

 

I In Vitro 3D Differentiation of OVs 

 

We applied a well-established retinal differentiation protocol to direct 

differentiation of iPSCs into OVs with some modifications [9, 28]. 

IMR90-1 cells were dissociated into single cells and aggregated to form 

uniform and size-controlled EBs of 9000 cells/EB (Figure 1A). We 

observed that IMR90-1 cells underwent stepwise differentiation into 

retinal progenitors. They expressed neuroectodermal marker OTX2 and 

SOX1 by Day 8 (Figure 1B) and acquired eye field specification markers, 

SIX6 and LHX2 by Day 12 (Figure 2). These EBs further developed into 

OVs as marked by co-expression of neuroretina markers PAX6 and 

CHX10 (Figure 3). Here we have shown that 3D in vitro differentiation 

of iPSCs into OVs recapitulates in vivo retinogenesis via sequential 

expression of the neuroectoderm, eye field and neuroretina markers. 

 

II Expression Profile of ECM Genes in iPSC-Derived OVs 

 

Figures 3 showed that OVs derived from iPSCs in 3D culture expressed 

markers of the neuroretina. These results suggest that iPSC-derived OVs 

can be used as a model to study the expression of retina-specific ECM. 

To characterize the ECM, gene expression profiles of iPSCs and iPSC-

derived OVs were analyzed with a commercially available RT2 

ProfilerTM PCR Array. iPSCs-derived OVs showed significantly 

downregulated expression of CAMs including E-cadherin, Intercellular 

adhesion molecule-1 (ICAM1), Integrin-α L, Integrin-α M, and Integrin-

α 6 (Figure 4) and upregulated expression of Neural cell adhesion 

http://dataanalysis.qiagen.com/pcr/arrayanalysis.php
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molecule 1 (NCAM1), Neural plakophilin related armadillo protein 

(NPRAP), Integrin-α 1 and Integrin-α 4 (Figure 4). Furthermore, ECM 

expression of glycoproteins Tenascin C, CD44, Vitronectin and 

Fibronectin I was significantly upregulated in iPSCs-derived OVs 

(Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Stepwise differentiation of iPSCs towards a retinal lineage. A) 9000 iPSCs were aggregated to form uniform-sized EBs and differentiated towards 

a retinal lineage. B) Differentiating EBs expressed neuronal marker OTX2 and SOX1 by Day 8 (scale bar=200µm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Differentiating EBs expressed eye field specification markers SIX6 and LHX2 by Day 12 (scale bar= 200µm). 
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Figure 3: Optic vesicle formation from iPSCs. Developing EBs from iPSCs co-expressed neuronal markers PAX6 and retina progenitor cell marker CHX10 

(scale bar=25µm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Expression of CAMs and glycoproteins in iPSC-derived OVs on Day 24 of differentiation. iPSC-specific CAMs including E-cadherin, ICAM1, 

Integrin-α L, Integrin-α M, Integrin-α 6 were downregulated while neural and retina specific CAMs NCAM1, NPRAP, Integrin-α 1 and Integrin-α 4 were 

upregulated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Expression of glycoproteins in iPSC-derived OVs on Day 24 of differentiation. Genes for ECM proteins important for retinogenesis namely 

Tenascin-C, CD44, Fibronectin I and Vitronectin were upregulated. 
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III Expression of ECM Proteins in iPSC-Derived OVs 

 

The data from the RT2 ProfilerTM PCR array showed that iPSCs-derived 

OVs expressed several ECM genes associated with cells of the retinal 

lineage. Immunofluorescence analysis was performed to further verify 

the expression and localization of ECM proteins. CD44, a glycoprotein 

expressed in retinal Müller cells was significantly higher in iPSC-

derived OVs as detected by RT-PCR microarray (Figure 4) and via 

immunofluorescence staining (Figure 7) [29]. Tenascin R, a known 

modulator of retinal axon growth, was also detected in iPSC-derived 

OVs (Figure 8) [30]. Additional neural and retinal ECM proteins were 

found to be expressed in the iPSC-derived OVs, include Reelin, 

Vitronectin, Delta 2 Catenin, Neuroglycan C, Neurocan, and Tenascin C 

(Figures 6-8) [31-33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Protein expression of Neuroglycan C, Neurocan, and Tenascin C in iPSC-derived OVs. Neuroglycan C, Neurocan, and Tenascin C were 

abundantly expressed in the developing iPSC-derived OVs (scale bar=25µm). DAPI (middle column), merge view (right column). These ECM proteins are 

known to be expressed in the developing eye in vivo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 7: Expression of NCAM, CD44 and Vitronectin in iPSCs-derived OVs. Immunofluorescence analysis showed that OVs expressed NCAM, CD 44 

and Vitronectin in the developing OVs (left column). Nuclear staining/DAPI (middle column), merge view (right column), scale bar=50µm. 



Extracellular Matrix Expression in Human Induced Pluripotent Stem Cell-Derived Optic Vesicles       7 

 

Int J Regenr Med  doi: 10.31487/j.RGM.2021.02.01     Volume 4(2): 7-10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Expression of Reelin, Tenascin R and Delta 2 Catenin in iPSC-derived OVs. Retina abundant proteins like Reelin, Tenascin-R and Delta 2 Catenin 

were expressed in developing iPSC-derived OVs during early stage retinogenesis. Nuclear staining/DAPI (middle column), merge view (right column), 

scale bar=50µm. 

 

Discussion 

 

Intracellular and extracellular changes occur during tissue/organ 

development and provide necessary cues for differentiation to ensure 

cells can acquire a tissue-specific phenotype [17, 19, 27, 34]. 

Engineering iPSCs into 3D EBs provides a unique environment that 

mimics the environment of early embryogenesis [29, 30]. Pluripotent 

stem cells have shown stepwise acquisition of developmental 

phenotypes during differentiation towards a defined lineage [3]. During 

human retinogenesis, the appearance of eye field cells (SIX6+ and 

LHX2+) in the diencephalon of the anterior neuroectoderm (with SOX1+ 

and OTX2+ cells) marks the initiation of the neuroretina development 

(with CHX10+ and PAX6+ retinal progenitor cells). The formation of 

OVs followed by subsequent invagination of the vesicles results in 

morphogenesis of the optic cup [8, 31, 32]. Similar sequences of retinal 

morphogenesis were reported in 3D differentiation of human ESCs and 

iPSCs in vitro [9, 28]. Even though cellular and phenotypical changes 

that occur during specification towards a retinal lineage have been well-

documented in literature, little is known about the dynamics of ECM 

formation during retinal development.  

 

In this study, we have demonstrated that iPSC-derived OVs expressed 

several CAMs/ECMs that have previously been shown to play key roles 

in retinogenesis in vivo, specifically NCAM1, NPRAP, Tenascin C, 

CD44, Fibronectin I, and Vitronectin. The iPSCs-derived OVs also 

expressed Tenascin R, Neurocan, Neuroglycan C, Reelin, Laminin S, 

and Delta 2 Catenin. Neuroglycan C is a neural tissue specific 

transmembrane chondroitin sulfate proteoglycan that regulates the 

formation of the retinal neural network [35, 36]. Another glycoprotein, 

Tenascin C works in conjunction with Tenascin R to regulate axonal 

growth during retinogenesis [24, 37]. Furthermore, Tenascin C has also 

been shown to interact with Neurocan, another glycoprotein that is 

expressed in neuronal tissue [38, 39]. CD44, another cell surface 

glycoprotein that was upregulated in this study, is known to be expressed 

by Müller cells in the retina in vivo [40, 41]. Finally, Fibronectin, and 

Vitronectin are integral components of the human retina which were also 

found to be significantly overexpressed in OVs derived from iPSCs [38-

41].  

 

The application of biological ECM scaffolds for tissue repair and 

regeneration is a rapidly advancing interdisciplinary field [33, 42]. A 

recent study showed that decellularized bovine retinal ECM can support 

attachment and growth of human retinal progenitor cells [43]. ECM 

scaffolds derived from CNS tissue have also been reported to support 

migration and proliferation of neural stem cells [44, 45]. Furthermore, 

another study demonstrated that ECM scaffolds derived from skin 

promoted cell engraftment, proliferation and wound healing without scar 

formation [46, 47]. Many groups have confirmed that tissue-specific 

ECM promotes maturation and integration when seeded with 

corresponding cell types [7, 20, 48-54]. These studies indicate that native 

ECM is a good candidate as a biomaterial for tissue engineering 

applications.  

 

ECM can be acquired from different sources including human 

(allogeneic) or animal (xenogeneic) donor tissues [48]. However, it is 

important to note that animal-derived ECM products pose risks of 

immunoreactivity and zoonotic disease transmission, whereas human 

donor tissues are often in short supply [50, 55-60]. Since patient-derived 



Extracellular Matrix Expression in Human Induced Pluripotent Stem Cell-Derived Optic Vesicles       8 

 

Int J Regenr Med  doi: 10.31487/j.RGM.2021.02.01     Volume 4(2): 8-10 

materials are generally preferred for tissue replacement therapy, 

generating ECM from iPSC-derived organoids could provide autologous 

materials ideal for tissue repair and regeneration. Using stem cells as a 

potential source for tissue-specific ECM is a novel approach. There are 

a few reports on stem cell-derived ECM applications in the literature, 

including a recent study that described the ability of ECM derived from 

undifferentiated EBs to support ESC proliferation and differentiation [7]. 

Several studies have shown that while undergoing chondrogenic 

differentiation, MSC-derived ECM can induce chondrogenic 

differentiation of seeded stem cells without exogenous growth factors 

[61, 62]. These studies have demonstrated the feasibility of obtaining 

chondrogenic ECM for cartilage regeneration from MSC aggregates 

differentiating towards a chondrogenic phenotype. 

 

In summary, we have successfully used human iPSCs as a tool to 

recapitulate early stages of retinal development in this study. We have 

shown that developing OVs expressed several ECM proteins that are 

known to play critical roles during retinogenesis in vitro. We have also 

demonstrated that iPSCs in 3D suspension culture can generate native 

retina-specific ECM. Future work will include examining the potential 

of iPSC-derived OVs as an autologous source of ECM materials that can 

support axonal survival, growth, and guidance for retinal regeneration. 

Further studies will also be needed to validate the regenerative potency 

of autologous retina-specific ECM in retinal disease/injury. 
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