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A B S T R A C T 

Background: Poly lactic-co-glycolic acid (PLGA) has been widely investigated for various biomedical 

applications, such as craniofacial bone regeneration, wound dressing and tissue engineering. 

Electrospinning is a versatile technology used to produce micro/nanoscale fibers with large specific surface 

area and high porosity. 

Purpose: The aim of the current study is to prepare PLGA nanofibers using electrospinning for guided 

tissue regeneration/guided bone regeneration applications. The objective of this study is to determine the 

appropriate electrospinning parameters such as applied voltage, flow rate, spinneret-collector distance and 

polymer solution concentration for preparation of PLGA fibrous membrane and their effect on the mean 

fiber diameter of the electrospun fibers. 

Method: PLGA pellets were dissolved in Hexafluoroisopropanol (HFIP) in various concentrations 

overnight using a bench rocker. The resulting PLGA solution was then loaded into a syringe and 

electrospinning was done by maintaining the other parameters constant. Similarly, various fibrous mats 

were collected by altering the specific electrospinning parameter inputs such as applied voltage, flow rate 

and spinneret-collector distance. The morphology of the fibrous mats was characterized using Scanning 

Electron Microscope. The mean fiber diameter was assessed using ImageJ software and the results were 

compared using one-way ANOVA. 

Results: We obtained bead-free uniform fibers with various tested solution concentrations. One-way 

ANOVA analysis demonstrated significant variation in mean fiber diameter of the electrospun fibers with 

altering applied voltage, solution concentration, flow rate and spinneret-collector distance. 

Conclusion: The above-mentioned electrospinning parameters and solution concentration influence the 

mean fiber diameter of electrospun PLGA nanofibers. 

 

                                                                                © 2021 Yuanyuan Duan. Hosting by Science Repository. 
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Introduction 

 

With the advent of nanotechnology, functional polymeric nanofibers 

have emerged as a promising material in various biomedical applications 

such as tissue engineering, regenerative medicine, drug delivery, disease 

modeling and biosensing [1, 2]. In regenerative medicine, 2D and 3D 

polymeric fibrous scaffolds were designed and fabricated for the 

regeneration or repair of various tissues such as bone, skin, nerve, heart, 

blood vessel and musculoskeletal system by tailoring the structural and 

functional properties including fiber diameter and alignment, porosity, 
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stacking, patterning, surface functional groups, mechanical properties 

and biodegradability [3, 4]. In the early days, polymeric fibers prepared 

from natural polymers such as collagen, gelatin, chitosan, silk and 

alginate were largely investigated for tissue regeneration or repair 

because of their favourable characteristics as biocompatibility, 

biodegradability, and solubility in physiological environments [5-18]. 

However, their applicability was limited by immunogenic properties, 

unpredictable degradation rate, undefined release kinetics of loaded 

protein, poor mechanical properties, processing difficulties, cost, 

availability and the potential risk of transmitting animal-originated 

pathogens. The limited applicability of natural polymers coupled with 

the advantages of synthetic polymers such as their formability, 

mechanical strength tailoring, biocompatibility, flexibility and easily 

controlled design, etc. has led to the development of synthetic 

biodegradable polymeric fibers for tissue regeneration applications [19]. 

Various research groups have investigated the use of polyvinyl alcohol, 

poly-ε-caprolactone, poly (lactide-co-glycolide) (PLGA) etc. in bone 

tissue engineering applications [5, 19-24]. 

 

Among the synthetic biodegradable polymers, PLGA has been widely 

used in various biomedical applications such as sutures, drug delivery 

devices and bone tissue engineering scaffolds, owing to its excellent 

biocompatibility, controllable biodegradability, tunable degradation 

rates and mechanical properties. PLGA is the copolymer of L-lactic acid 

with glycolic acid and its biodegradability can be easily tailored by 

altering the ratio of lactide: glycolide groups. Also, it is an FDA- 

approved polymer and can be easily prepared into versatile formulations 

such as membranes, scaffolds, hydrogels, micro/nanoparticles, and 

sponges [25, 26]. Recently, PLGA nanofibers were being investigated 

for use in a wide range of biomedical applications due to their unique 

properties like the extremely high surface area to weight ratio, low 

density, high pore volume, small pore size, superior stiffness and tensile 

strength [23]. Polymeric nanofibers can be prepared by various 

techniques such as drawing, template-assisted synthesis, self-assembly, 

phase separation and electrospinning [27, 28]. However, electrospinning 

has gained wide attention recently owing to its numerous advantages 

over other techniques, which include versatility, cost-effectiveness, 

scalability, ability to produce continuous nanofibers with desired 

patterns, ability to tailor the fiber diameter and its ease of use. Also, the 

nanofibrous structures obtained with electrospinning have unique 

properties such as high surface area, high volume-to-mass ratio and 

inter/intra fibrous porosity [29]. 

 

Electrospinning is an electrohydrodynamic process, wherein a polymer 

liquid droplet is electrified to generate a jet, which is followed by 

stretching and elongation to generate fibers [30]. Of several factors 

affecting the electrospinning process, electrospinning parameters such 

as applied voltage, flow rate of the polymer solution and spinneret-

collector distance (S-C distance), and solution parameters like polymer 

concentration are crucial in affecting the fiber morphology and diameter 

of the obtained nanofibrous mats [29, 31-35]. Therefore, it is essential to 

study the effect of these governing parameters on the mean fiber 

diameter of the PLGA fibrous mats. Also, it is necessary to determine 

the appropriate parameters and solution concentration to achieve the 

desired fiber diameter of PLGA nanofibers for intended applications. 

These parameters vary with the polymer’s physical properties like 

molecular weight, inherent viscosity, composition etc. To our 

knowledge, there is little information available regarding the effect of 

electrospinning parameters and solution concentration to obtain PLGA 

(75:25) nanofibers for guided tissue regeneration/guided bone 

regeneration (GTR/GBR) applications. 

 

Thus, the objective of this study was to evaluate the effect of 

electrospinning parameters and polymer solution concentration on the 

mean fiber diameter of the electrospun PLGA nanofibers and to 

determine the appropriate electrospinning parameters and polymer 

solution concentration for the production of PLGA nanofibers to be used 

in the GTR/GBR membrane fabrication. The null hypothesis was that 

there was no significant difference in mean fiber diameter with altered 

electrospinning parameters and polymer solution concentration. 

 

Materials and Methodology 

 

Poly (L-lactide-co-glycolide) [75:25; PLGA] was purchased from 

Corbion (Purac America Inc., Lenexa, USA). 1,1,1,3,3,3-Hexafluoro-2-

propanol (HFIP) was purchased from Sigma-Aldrich (Millipore Sigma, 

St. Louis, USA). All chemicals were used as received without further 

purification. PLGA (14.5 wt%) was dissolved in HFIP overnight using a 

bench rocker. The resulting PLGA polymer solution was loaded into a 

syringe and 18-gauge needle is attached to it. Electrospun nanofibers 

were fabricated by the electrospinning process using an Inovenso 

apparatus (Inovenso Inc., MA, USA) which is schematically shown in 

(Figure 1). The apparatus consists of a propulsion pump, a syringe, a 

high voltage power supply and a collector. The positive electrode and 

the negative electrode of the high voltage power supply are connected to 

the syringe needle and collector plate, respectively. All the samples were 

collected at the laboratory conditions of 23±2℃ temperature and 50% ± 

1% relative humidity and left to dry overnight before analysis to allow 

for the residual solvent evaporation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic of electrospinning equipment setup. 

 

To prepare electrospun PLGA fibrous samples at various S-C distances, 

S-C distance was taken as a variable and samples were collected at 12.5 

cm, 15 cm, 17.5 cm and 20 cm, while other parameters were constant as 

given in (Table 1). Similarly, the applied voltage was taken as a variable 

for collecting electrospun PLGA fibrous samples at 12 kV, 16 kV and 

20 kV, while other parameters were constant as given in (Table 1). 

Likewise, the flow rate of the polymer solution was taken as a variable 

for collecting electrospun PLGA fibrous samples at 10μl/min, 15μl/min 

and 20μl/min, while other parameters were constant as given in (Table 

1). In addition to 14.5 wt% PLGA solution, 7 wt% and 11 wt% PLGA 

solutions were prepared by dissolving PLGA in HFIP overnight using a 

bench rocker. Electrospun PLGA fibrous samples were prepared from 

various prepared solution concentrations by maintaining other 

parameters constant as given in (Table 1). The morphology of all the 
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fibrous mats was characterized using Field-Emission Scanning Electron 

Microscopy (SEM, Supra 40, Carl Zeiss, Germany). Specimens were 

gold-coated using a sputter coater (Q150T, Carl Zeiss, Germany) to 

improve the electrical conductivity, then observed using SEM at a 

voltage of 5 kV. ImageJ software (ImageJ, National Institute of Health, 

MD) was used to assess the mean fiber diameter based on the SEM 

images. At least 30 different positions on each specimen will be 

measured and the results were compared using one-way ANOVA. 

 

Table 1: Prepared samples. 

Variable Voltage (kV) S-C Distance (cm) Flow Rate(μl/min) Polymer solution concentration (PLGA wt%) 

 

S-C 

Distance 

12 12.5 15 14.5 

12 15 15 14.5 

12 17.5 15 14.5 

12 20 15 14.5 

 

Applied Voltage 

12 20 15 14.5 

16 20 15 14.5 

20 20 15 14.5 

 

Flow rate 

20 17.5 10 14.5 

20 17.5 15 14.5 

20 17.5 20 14.5 

Polymer solution concentration 20 17.5 15 7 

20 17.5 15 11 

20 17.5 15 14.5 

 

Results 

 

The SEM images obtained at S-C distances of 12.5, 15, 17.5 and 20 cm 

were depicted in (Figures 2A-2D), respectively, and their corresponding 

mean fiber diameter values were plotted in (Figure 3). The mean fiber 

diameter observed at S-C distances of 12.5, 15, 17.5 and 20 cm were 3.8 

± 0.4μm, 3.4 ± 0.2μm, 1.4 ± 0.01μm and 2.7 ± 0.09μm, respectively. 

One-way ANOVA analysis demonstrated a statistically significant 

difference (P value = 1.35 E-41) between the mean fiber diameters at 

different spinneret-collector distances tested. The SEM images obtained 

with voltages of 12, 16 and 20 kV were depicted in (Figures 4A-4C), 

respectively and their corresponding mean fiber diameter values were 

plotted in (Figure 5). The mean fiber diameter observed at applied 

voltages of 12, 16 and 20 kV were 2.7 ± 0.08μm, 2 ± 0.08μm and 3.2 ± 

0.7μm, respectively. One-way ANOVA analysis demonstrated a 

statistically significant difference (P value = 2.38 E-12) between the 

mean fiber diameters at different voltages tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: SEM images obtained at S-C distances of A) 12.5cm B) 15cm 

C) 17.5cm D) 20cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Plot of mean fiber diameter at various S-C distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: SEM images obtained at applied voltages of A) 12 kV B) 16 

kV C) 20 kV. 
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Figure 5: Plot of mean fiber diameter at various applied voltages. 

 

 

 

 

 

 

 

 

 

Figure 6: SEM images obtained at polymer solution flow rates of A) 10μl/min B) 15μl/min C) 20μl/min. 

 

The SEM images obtained with a flow rate of 10, 15 and 20μl/min were 

depicted in (Figures 6A-6C), respectively and their corresponding mean 

fiber diameter values were plotted in (Figure 7). The mean fiber diameter 

observed at polymer solution flow rates of 10, 15 and 20μl/min were 3.4 

± 0.2μm, 2.5 ± 0.1μm and 3.1 ± 0.9μm, respectively. One-way ANOVA 

analysis demonstrated a statistically significant difference (P value= 1.19 

E-06) between the mean fiber diameters at different tested solution flow 

rates. The SEM images obtained with PLGA wt% of 7, 11 and 14.5 were 

depicted in (Figures 8A-8C), respectively and their corresponding mean 

fiber diameter values were plotted in (Figure 9). The mean fiber diameter 

observed at polymer solution concentrations of 7, 11 and 14.5 PLGA 

wt% were 2.5 ± 0.2μm, 3.1 ± 0.1μm and 2.5 ± 0.1μm, respectively. One-

way ANOVA analysis demonstrated a statistically significant difference 

(P value= 8.18 E-10) between the mean fiber diameters at different tested 

solution concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Plot of mean fiber diameter at various polymer solution flow rates. 

 

 

 

 

 

 

 

 

 

 

Figure 8: SEM images obtained at polymer solution concentrations of A) 7 wt% B) 11 wt% C) 14.5 wt%. 
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Figure 9: Plot of mean fiber diameter at various polymer solution concentrations. 

 

Discussion 

 

SEM micrographs (Figures 2A-2D) demonstrated bead-free uniform 

fibers at the S-C distances of 15 cm, 17.5 cm and 20 cm. At S-C distance 

of 12.5 cm, there is a bead formation observed. At spinneret-collector 

distances of greater than 20 cm, we observed that the fibers were not 

reaching the collector plate. Thus, the spinneret-collector distances 

tested were within the range of 12.5 cm to 20 cm. An ideal S-C distance 

should ensure full extension and solidification of the jets, resulting in the 

formation of solid fibers and it varies with the polymer system. The 

morphology and diameter of nanofibers are easily affected by varying S-

C distance because it depends on the deposition time, evaporation rate 

and whipping or instability interval [36]. From (Figure 3), we can 

observe that there is a decrease in fiber diameter on increasing the 

spinneret-collector distances from 12 cm to 17.5 cm. This is in 

consistency with studies conducted by Matabola et al. and Wang et al. 

with different polymer systems [36, 37]. However, with a further 

increase in spinneret-collector distance to 20 cm, there is an increase in 

mean fiber diameter (Figure 3). Also, with increased S-C distances (17.5 

cm and 20 cm), we can observe a narrower fiber diameter distribution. 

Furthermore, from the observed results, we can conclude that uniform 

bead-free fibers were obtained at the S-C distance of 17.5 cm. 

 

SEM micrographs (Figures 4A-4C) demonstrated bead-free uniform 

fibers at various tested voltages. When the voltage was lower than 12 

kV, we observed beads and droplet formation on the fibrous mats. There 

was a frequent clogging of the syringe needle and sparks observed with 

voltages greater than 20 kV. Thus, the tested voltage range is between 

12 kV to 20 kV. The applied voltage directly determines the amount of 

charges carried by the jet and the magnitude of electrostatic repulsion 

among the charges, as well as the strength of the interactions between 

the jet and the external electric field. A higher voltage usually favours 

the formation of thinner fibers, whereas it may also induce the ejection 

of more fluid, giving rise to fibers with thicker diameters [33]. From 

(Figure 5), we can observe that there is a decrease in mean fiber diameter 

on increasing the voltage from 12 kV to 16 kV. This might be due to the 

increased amount of charge carried in the jet at higher applied voltages, 

resulting in the increase of both electrostatic and Coulomb repulsive 

forces, which in turn might have exerted an increased tensile force on 

the jet, leading to a reduction in fiber diameter. However, on further 

increase in voltage to 20 kV from 16 kV, there is an increase in mean 

fiber diameter and a sudden increase in fiber diameter distribution. This 

might be attributed to be the induced ejection of more polymer liquid at 

higher voltages (20 kV). Furthermore, from the observed results, we can 

conclude that uniform bead-free fibers were obtained at the applied 

voltage of 16 kV. 

 

SEM micrographs (Figures 6A-6C) demonstrated bead-free uniform 

fibers at flow rates of 10μl/min and 15μl/min. At 20μl/min flow rate, 

there is a bead formation and poor fiber uniformity observed. Below 

10μl/min, the flow rate was too low to observe the Taylor cone 

formation. Thus, the flow rates tested were within the range of 10μl/min 

to 20μl/min. The effect of the flow rate of polymer solution varies with 

the polymer system tested and the results were inconsistent. Few studies 

had reported a statistical decrease in the mean fiber diameter with 

increased flow rate. However, some studies had reported the opposite. 

Some researchers believed that an increase in the flow rate resulted in an 

increased ejected volume leading to the increase in fiber diameter [38]. 

Also, the rapid advancement of the spray solution resulted in a rapid 

increase in fiber diameter due to incomplete drying of the fibrous mats 

[29, 39]. From (Figure 7), we can observe that there is a decrease in fiber 

diameter on increasing the flow rate of solution from 10μl/min to 

15μl/min. On further increase in flow rate of solution to 20μl/min, there 

is an increase in mean fiber diameter and a large increase in fiber 

diameter distribution. This could be attributed to the increase in the 

amount of ejected solution with increased flow rate. Furthermore, from 

the observed results, we can conclude that uniform bead-free fibers were 

obtained at the flow rate of 15μl/min. 

 

SEM micrographs (Figures 8A-8C) demonstrated bead-free uniform 

fibers with various tested solution concentrations. When the solution 

concentration was lower than 7 wt%, we observed poor fiber uniformity 

of the obtained fibrous mats. The polymer solution was very viscous and 

there was a frequent clogging of the syringe needle with polymer 

solution concentrations above 14.5 wt%. Thus, the concentrations of the 

polymer solutions tested were within the range of 7 wt% PLGA to 14.5 

wt% PLGA. From (Figure 9), we can observe that there is an increase in 

fiber diameter with increasing the polymer solution concentration from 

7 wt% to 11 wt%. Increasing the concentration of the polymeric solution 

results in viscous solution and increased polymer chain entanglements 

leading to increased fiber diameters [34]. However, on further increase 

in polymer solution concentration to 14.5 wt%, there is a decrease in 

mean fiber diameter and the mean fiber diameter of 7 wt% and 14.5 wt% 

polymer solutions are almost similar. This might be attributed to changes 

in viscosity and conductivity of polymer solution. Also, at higher 

concentrations, more uniform fibers with narrower fiber diameter 

distribution were observed. Furthermore, from the observed results, we 
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can conclude that uniform bead-free fibers were obtained at 14.5 wt% 

PLGA solution. 

 

Future studies correlating the effect of mechanical properties and 

physical properties with mean fiber diameters are necessary to determine 

the applicability of these nanofibers in various biomedical applications. 

For GTR/GBR membrane applications, adequate mechanical properties 

are a primary requisite. Thus, optimization of mechanical properties by 

controlling various electrospinning parameters and mean fiber diameter 

is necessary to obtain a durable GTR/GBR membrane. Also, 

characterization of the optimized GTR/GBR membrane to determine the 

porosity, chemical structure, physical properties and cell culture studies 

are necessary to determine the applicability of these nanofibers in 

GTR/GBR membrane applications. 

 

Conclusion 

 

To conclude, there is a significant variation in the mean fiber diameter 

with varying the solution concentration and the electrospinning 

parameters as applied voltage, polymer solution flow rate and S-C 

distance. Thus, the null hypothesis stating that there was no significant 

difference in mean fiber diameter with altered electrospinning 

parameters and polymer solution concentration was rejected. Also, 

within the limitations of this study, we can conclude that the flow rate of 

15μl/min, applied voltage of 16 kV, S-C distance of 17.5 cm and polymer 

solution concentration of 14.5 wt% PLGA are appropriate for the 

production of PLGA (75:25) nanofibers to be used in the GTR/GBR 

membrane fabrication. 
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