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A B S T R A C T 

Purpose: To explore the effects of the discretization approach on the stability of the second-order computed 

tomography (CT) based textural features, derived from gray-level co-occurrence matrices (GLCMs).  

Materials and Methods:  A Cathphan phantom was scanned seven times over three weeks. Four cylindrical 

regions (ROIs) were manually outlined for each scan. Two regions had fairly uniform density, while the 

other two were more heterogeneous. For each ROI four GLCMs were created – with 64 bins, with 32 bins, 

and with fixed bin widths of 1 and 4 HU. Eighteen commonly used radiomics features were calculated form 

the GLCMs, and their variabilities were compared among the four GLCM representations. 

Results:   The uniform ROIs had average standard deviation of the HUs of ~1.5%, while the heterogeneous 

ROIs had standard deviations greater than 4%. For the uniform ROIs the variability of the fixed number of 

bins GLCMs was on average lower than the variability for fixed bin width GLCMs. For the heterogeneous 

ROIs the situation was reversed. For the uniform ROIs the variability of the mean, variance, and energy 

decreased when the corresponding quantities were multiplied by the RIO volumes. Variabilities of the 

majority of the remaining features for those ROIs were also reduced when the features were normalized to 

the HU ranges or to the ROI volumes. For heterogeneous ROIs the mean, variance, energy, auto correlation, 

and correlation were weakly dependent on volume and range. The variability of fixed number of bins 

GLCMs exhibited strong dependence on the ROI range. 

Conclusions: This study indicates that the GLCMs creation is affected differently depending on the 

homogeneity of the ROI. The fixed number of bins GLCMs produce fewer variable features for homogenous 

objects and vice-versa. Additionally, it was demonstrated that for realistic patient scenarios the use of fixed 

bin width GLCMs may be advantageous 

 

Introduction 

In the last several years the field of quantitative medical imaging has 

rapidly developed. The field of the so called radiomics holds potential 

for improved cancer diagnoses and management [1-3]. Publications on 

quantitative imaging range from studies that utilize very few and basic 

features to studies that extract a large number of much more 

sophisticated quantities [1, 3-8]. Extraction of imaging features has been 

applied to almost all available imaging modalities – plain radiographs, 

computed tomography (CT), positron emission tomography (PET), 

magnetic resonance imaging (MRI), functional MRI, etc [3, 9-23]. The 

most widely used quantitative image measures include one-dimensional 

features such as tumor size, mean voxel (volume element) intensity, and 

intensity standard deviation, which are easy to understand and 

straightforward to obtain [24-26]. They were developed historically on 
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the basis of clinician experience with cancer therapy and subsequent 

outcomes. 

 

More recent medical imaging quantitative features are usually statistical-

, model-, or transform-based [27]. They are more complex than the early 

quantitative measures and reflect variations in tumor morphology, 

heterogeneity, and texture [28]. Image texture in particular is defined as 

a spatial arrangement of the voxels comprising the tumors that allow the 

extraction of elaborate image properties and/or patterns. A textural 

feature is defined as a measure derived from a texture matrix.22 The 

texture matrices are created through certain mathematical manipulations 

which re-arrange the voxels comprising the tumors from the raw imaging 

data (CT, MRI, PET) [22, 29-32].  

 

In the last several years it was realized that different factors can 

significantly affect the quantitative imaging results. This is particularly 

relevant to quantitative imaging features stability and reproducibility 

[33-35]. One of the obvious factors for feature variability is the voxel 

size of the imaging study, which is determined by the field of view as 

well as the scanning slice thickness [36-38]. Another factor which 

influences the imaging features stability is the reconstruction algorithm 

used for raw data post-processing [33-35]. Yet another factor which 

affects the feature behavior is the image discretization approach, which 

has been investigated for positron-emission tomography imaging [39]. 

Majority of the studies employing texture analyses utilize fixed number 

of discretization levels which in effect bins the image into varying bin 

sizes, depending on the range of gray values of the raw data [12, 21, 22, 

40-44]. Another much less exercised approach is to bin the data into 

fixed sized bins, where the texture object will vary in size depending on 

the number of gray levels [8, 39].  

 

The purpose of the presented study is to explore the effects of the binning 

approach on the stability of the second-order computed tomography 

(CT) based texture features derived from gray-level co-occurrence 

matrices (GLCM) [31]. In addition, the study also explores the 

volumetric effects and the effects of the number of gray levels on feature 

stability. 

Materials and Methods 

I Phantom imaging 

 

A Cathphan (The Phantom Laboratory, Greenwich, NY, USA) CT 

calibration phantom was used in this investigation. The phantom is 

routinely used in Radiation Oncology departments for characterization 

of multi-slice CT scanners as well as sensitometry measurements, 

required in radiation therapy. The phantom includes 8 sensitometry 

targets (Teflon, Delrin, Acrylic, Polystyrene, LDPE, PMP, Air and a 

small vial for water) suitable for CT number calibration. The phantom 

was scanned seven times over a period of three weeks. In four of those 

seven measurements the phantom was scanned twice daily on separate 

days. In the first set of measurements the interval between the two 

successive CT scans was 15 minutes, while in the second set it was over 

6 hours. The CT imaging was performed on Siemens (Erlangen, 

Germany) Somatom 64-slice CT scanner. The imaging utilized clinically 

used brain protocol with slice thickness of 0.1 cm and field of view of 

50 cm. Thereby, the reconstructed CT images resulted in voxel size of 

0.976×0.976×1 mm3. 

II Region of interest delineation and texture feature extraction 

 

The CT scans of the phantom were imported in Pinnacle (Philips 

Radiation Oncology Systems, Fitchburg, WI, USA) treatment planning 

system (TPS). Segmentation of the images was accomplished by the TPS 

contouring tools. Four cylindrical regions of interest (ROIs) were 

manually outlined on the phantom for each of the seven scans. The 

cylinders had diameters of approximately 1.1 cm and 4.2 cm, while the 

length was approximately 2.0 cm. (Figure 1) presents an axial slice of 

the phantom, together with the contours of the four ROIs. The regions 

are denoted on the figure by their nominal Hounsfiled numbers (HUs) of 

~780, ~1390, ~950, and ~1100 (ROIs 780, 950, 1100, and 1390 

hereafter). The volumes for the four regions ranged from 1.5 cm3 (ROIs 

780 and 1390) to 28 cm3 (ROIs 950 and 1100). The ROIs 780 and 1390 

had fairly uniform density, while the other two ROIs had more variable 

density. The homogenous ROIs had HU variations of the order of 11% 

to 13%, while the variable density ROIs exhibited HU variations of about 

42% to 47%. The variations were estimated by dividing the average HU 

range of the ROIs by the mean ROI HU, obtained by averaging over the 

seven test-re-test measurements. Alternative metric of ROI uniformity, 

utilized in this work, was based on HU variability. HU variability is 

defined as the average (over the seven scans) HU standard deviation 

divided by the mean HU, obtained from the seven scans for each of the 

ROIs. The homogenous ROIs had variability of about 1.5%, while the 

more heterogeneous ROIs had variability of 4.2% and 6%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Axial slice from the phantom used in this investigation. The 

imaging protocol used for the CT data acquisition was our clinically used 

brain protocol, where the reconstructed voxel size is 0.976×0.976×1 

mm3. The four ROIs used in this work for testing of the imaging feature 

variability dependence on the GLCM discretization are outlined on the 

figure. The nominal Hus for each ROI are also shown. Please note that 

ROI 1100 contains ROI 1390. While the ROI 1390 is fairly homogenous 

(~1.5% standard deviation of the HUs), the ROI 1100 is more variable 

(~6% standard deviation of the HUs). ROI 1390 has average HU of 1390, 

while the incorporation of other materials in the ROI 1100 brings the 

average HU for that ROI down to 1100 
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For each ROI four gray-level co-occurrence matrices (GLCMs) were 

created with an in-house software.31 Two of the GLCMs were with fixed 

number of bins, 32 and 64 respectively, while the other two used fixed 

bin width of 1 HU and 4 HU. In all for representations the GLCMs 

covered the entire range of HU characteristic for the ROI. The fixed bin 

number GLCMs had fixed size, while the fixed bin width GLCMs had 

variable sizes, depending on the ROI HU range. Eighteen commonly 

used image features were calculated from the four GLCMs. Those 

features included maximum, mean, variance, entropy, energy, IMC1, 

IMC2, auto correlation, cluster prominence, shade, contrast, correlation, 

tendency, dissimilarity, homogeneity 1, homogeneity 2, inverse 

difference moment normalized, and inverse difference normalized [8].  

For each of those features its variability over the seven scans was 

estimated. The feature variability was defined as standard deviation of 

the feature normalized to the average of the feature. For presentation 

purposes the variabilities were converted into per-cent values. 

 

III Feature comparisons and normalization 

 

The feature variability was compared on ROI basis. Namely, for each 

ROI the feature variabilities were presented on a common plot. This 

representation allowed the separation of ROIs with more variable density 

against the ROIs with more uniform density. Furthermore, the variability 

of the GLCMs with higher resolutions were normalized to their 

counterparts with lower resolutions. Thereby, the variabilities of 1 HU 

and 4 HU GLCMs were compared, as well as the variabilities of 64 and 

32 bin GLCMs on ROI-by-ROI basis. By performing this normalization, 

it was evaluated to what extent the noise, resulting from the fine 

resolution, affects the feature stability, depending on the GLCM 

discretization approach. 

 

In addition, all the features were normalized on measurement-by-

measurement (i.e. scan-by-scan) basis, and the variabilities of the 

normalized features were compared to the variabilities of the original 

(non-normalized) features. The tested normalizations included 

multiplication and division to the ROI volumes, as well as multiplication 

and division by the ROI ranges. The rationale behind the volume 

normalizations was that the investigated textural features are derived 

from GLCMs, which in turn are generated form volumetric objects 

differing in size. Therefore, the differences in size might affect the 

contents of the GLCMs, which in turn might affect the imaging features 

and in particular their variabilities. The range normalization hypothesis 

is rooted in the fact that all of the features are based on summations, 

which scale with the number of gray-levels in the GLCMs. Thereby, 

differences in the ranges from measurement-to-measurement would 

affect the GLCMs and the corresponding feature variability. 

Results 

I Feature variability dependence on GLCM discretization 

 

The interplay between feature variability dependence and GLCM 

discretization approach is summarized on (figure 2) Close inspection of 

the figure indicates a noticeable contrast between the relations between 

the ROI homogeneity and the GLCM binning technique. The top two 

panels of the figure present the variabilities for the homogenous regions 

780 and 1390 for all four GLCM representations, which are color coded 

in the figure legend. Notably, with all of the GLCM discretization’s the 

variabilities of the inverse difference moment normalized, and the 

inverse difference normalized are of the order of 0.5%. Because of the 

scale of the plot they are unnoticeable. As for the variabilities of the other 

features in majority of the cases the variability resulting from the fixed 

bin width GLCMs is larger than the variability of the fixed number of 

bins GLCMs. The picture is completely reversed for the variabilities in 

the more heterogeneous ROIs (ROIs 950 and 1100), plotted in the 

bottom two panels. In that case the variability of the fixed bin width 

GLCMs is substantially smaller than the variability exhibited by fixed 

number of bins GLCMs. Another interesting observation which can be 

made from the bottom two panels is that with increasing ROI 

heterogeneity the difference in variability between fixed number of bins 

and fixed bin width GLCMs increases. The variability of the HUs of ROI 

950 (standard deviation of HUs normalized to nominal HU) is 4.2%, 

while the HU variability of ROI 1100 is 6.6%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A composite bar plot of the variability of all 18 features for all 

ROIs, derived from all GLCM discretization representations. The type 

of the GLCM discretization is color coded in the figure legend, where 

also the ROI nominal HU is specified. The top two panels are for the 

more homogenous ROIs 780 and 1390, while the bottom two panels 

present the data for the more heterogeneous ROIs. The variability is 

expressed in percent. Note that for normalized inverse difference 

moment and the normalized inverse difference the variabilities are 

around and less than 1%, and thereby they too small for the scale of the 

plot. 

 

II Feature variability dependence on GLCM bin width 

 

Another aspect examined in this work is the GLCM variability 

dependence on the discretization resolution, since this resolution can 

affect the image noise (figure 3) presents the normalized variabilities for 

all four ROIs [21, 22, 39, 45]. The variability of the features derived from 

the 64 bin GLCMs have been normalized to the feature variability 

derived from 32 bin GLCMs (blue bars), while the variability of 1 HU 

GLCMs was normalized to the variability of the 4 HU GLCMs (red 

bars). In addition to the normalized variabilities in each panel of the 

figure the value of one is plotted as a dashed line to help the comparison. 

Fixed number of bins GLCMs demonstrate that with decreasing number 

of bins (from 64 to 32) and presumably decreasing nose the average 

(over all 18 features) normalized variability is 0.99, 0.98, 1.19, and 1.03 

for ROIs 780, 1390, 950, and 1100. The average normalized variabilities 

between 1 HU and 4 HU GLCMs are 1.23, 0.92, 1.0, and 1.02 
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respectively. Those average normalized variabilities as well as the 

feature-by-feature data on Figure 3 indicate that the discretization bin 

size in the GLCM generation has rather minimal effect. There are only 4 

out of 144 normalized feature variabilities where the difference from two 

to about four-fold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Similarly, to Figure 2 this a composite bar plot, but this time 

for the normalized variabilities derived from the different GLCMs. The 

normalization is specified by color coding in the figure legend. The 

variability ratios are presented for each ROI separately in the 

corresponding figure panels. In addition to the dimensionless variability 

ration the value of one is also plotted in each panel with a dashed line. 

This indicates what is the relative ration of feature variability as a 

function of the GLCM discretization approach. 

 

III Normalization effects on GLCM feature stability 

 

The normalization dependence of the feature variability was examined 

for each ROI separately for all four GLCM representations. (Table 1) 

presents the variability dependence on normalization for ROI 780. Of 

the eighteen features studied only twelve exhibited variability 

dependences on the normalization. Those features are listed in the first 

column of the table. The next four columns outline what type of 

normalization reduces the feature variability for each GLCM 

representation – fixed bin widths of 1 HU and 4 HU, as well as fixed 

number of 64 and 32 bins respectively. The notations “*Volume” and 

“/Volume” indicate that the feature variability is reduced by 

multiplication or division by ROI volume respectively. Similarly, 

“*Range” and “/Range” reduce variability by multiplying or dividing by 

the ROI range. In the next set of four columns in the table the 

unnormalized variabilities of the imaging features are shown for each 

GLCM generation approach. Finally, in the last four columns the feature 

variability after the normalization is presented. The empty cells in the 

table indicate that for that particular GLCM no reduction of feature 

variability was observed after all normalization types were applied. The 

comparison of the unnormalized and normalized variabilities on feature-

by-feature basis for each GLCM demonstrates the achievable reduction 

in variability after normalization. For example, the mean, the variance, 

the energy, and the auto correlation are weekly dependent on volume 

multiplication since the changes in their variabilities are small for all 

GLCM representations for ROI 780. The same is true for majority of the 

other features, but there are exceptions. For instance, cluster tendency 

and homogeneity 2 for fixed bin width GLCMs are very strongly 

affected by range, where normalization reduces variability almost in 

half. 

 

 

Table 1: Normalization effects on the image feature variability for twelve features, derived from all GLCMs. The table is for the uniform density ROI 780. 

Only twelve of the eighteen investigated textural features are presented in the table since image feature variability was reduced only for those features. The 

first column outlines the feature type, the next four columns present the normalization type which reduces the feature variability, the subsequent four columns 

show the non-normalized feature variability (in percent), and the last four columns present the feature variability reduction after normalization. The 

normalization is “*Volume”, “/Volume”, “*Range”, and “/Range” where it is multiplication and division by ROI volume, as well as multiplication and 

division by ROI range respectively. The type of GLCM discretization is outlined in the second raw of the table. 

 Normalization type ROI 780  Variability ROI 780 [%] Variability ROI 780 normalized [%] 

 1 HU 4 HU 64 Bins 32 Bins 1HU 4 HU 64 Bins 32 Bins 1 HU 4 HU 64 Bins 32 Bins 

Mean 
*Volume *Volume *Volume *Volume 33.1

3 61.34 13.62 16.89 31.55 59.66 11.90 15.62 

Variance 
*Volume *Volume *Volume *Volume 18.1

7 31.18 29.05 30.51 16.78 29.83 28.09 29.50 

Energy 
*Volume *Volume *Volume *Volume 11.0

4 10.96 48.90 55.89 9.81 9.70 47.64 54.46 

Auto correlation 
*Volume *Volume *Volume *Volume 26.4

7 24.60 59.96 20.39 25.06 23.19 58.31 20.32 

Prominence 
/Range /Range /Range /Range 40.1

9 26.24 72.11 66.74 38.13 17.82 56.24 48.19 

Shade 
/Range /Range /Range /Range 65.2

5 29.46 75.57 75.08 65.16 24.96 64.78 63.91 

Contrast 
/Range /Range /Range /Range 70.6

9 15.20 20.68 26.17 35.28 14.42 19.34 26.04 

Correlation 
/Volume /Volume /Volume /Volume 15.0

6 20.42 14.96 15.55 13.30 19.44 14.05 

14.43 
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Tendency 
/Range /Range /Range /Range 92.9

1 92.54 28.80 28.16 53.91 53.48 28.18 

28.04 

Dissimilarity 
/Range /Range   19.3

9 19.38 12.97 19.29 19.09 19.17  

 

Homogeneity 1 
/Range /Range   17.4

9 13.50 11.03 14.41 17.43 12.99  

 

Homogeneity 2 
/Range /Range /Range /Range 70.3

7 65.32 20.39 24.89 34.96 30.20 19.06 

24.74 

Table 2 is similar to Table 1, but it presents the data for the other 

homogeneous region – ROI 1390. The feature variability is affected in 

similar fashion as for ROI 780, but this time the reduction in the 

variability of cluster tendency and homogeneity 2 is less pronounced 

than for the first homogeneous ROI. The common observation for the 

two ROIs is that all twelve features for almost all GLCM generation 

approaches are influenced by some type of normalization of the imaging 

feature. 

 

The remaining tables (cf. Table 3 and Table 4) contain the data for the 

two heterogeneous regions – ROI 950 and ROI 1100. For fixed bin width 

GLCMs the mean the variance, and the energy demonstrate weak 

dependence of variability on volume. In the case of fixed bin width 

GLCMs for these features the variability is minimized by normalizing to 

the range as opposed to multiplication by volume as is was in the case 

with the homogeneous ROIs above. Furthermore, the variability of all 

other imaging (from auto correlation to homogeneity 2) features for the 

fixed number of bins GLCMs in table 3 and table 4 is consistently 

reduced when the features are multiplied by the range of the ROI, which 

is contrast with the behavior of the variability of those features in the 

former two tables, where normalization to range and volume, as well as 

no normalization reduce variability. The only other two features for 

which the variability is reduced by normalization in the case of fixed bin 

width GLCMs are the auto correlation and the correlation, where 

normalization to volume and multiplication to range respectively. 

 

Table 2: The same as Table 1, but for the second uniform density ROI (ROI 1390). 

 Normalization type ROI 1390  Variability ROI 1390 [%] Variability ROI 1390 normalized [%] 

 1 HU 4 HU 64 Bins 32 Bins 1HU 4 HU 64 Bins 32 Bins 1 HU 4 HU 64 Bins 32 Bins 

Mean *Volume *Volume *Volume *Volume 37.79 52.87 23.29 21.21 33.86 48.61 20.22 18.10 

Variance *Volume *Volume *Volume *Volume 21.92 30.99 17.17 17.31 18.34 27.25 16.79 16.96 

Energy *Volume *Volume *Volume *Volume 14.21 14.53 38.37 37.46 10.73 11.14 38.16 37.12 

Auto 

correlation 

*Volume *Volume *Volume *Volume 

49.64 49.10 8.52 8.48 49.47 48.94 7.08 6.98 

Prominence /Range /Range /Range /Range 70.80 76.28 64.91 64.99 53.54 85.26 47.45 47.74 

Shade /Range /Range /Range /Range 50.15 50.23 57.22 57.35 47.05 47.15 39.33 39.71 

Contrast /Range /Range /Range /Range 57.96 57.56 18.88 18.88 38.57 38.10 11.88 12.18 

Correlation /Volume /Volume /Volume /Volume 12.39 20.12 17.87 16.30 10.54 18.61 16.38 14.59 

Tendency /Range /Range /Range /Range 74.01 73.84 37.66 37.66 56.35 56.12 18.29 18.56 

Dissimilarity /Range /Range   21.09 21.14 4.88 5.21 4.88 4.88   

Homogeneity 1 /Range /Range   19.41 15.70 4.04 3.68 5.54 8.36   

Homogeneity 2 /Range /Range /Range /Range 57.82 55.45 18.59 17.79 38.41 35.65 11.93 12.37 

 

Table 3: The same as Table 1, but for the first heterogeneous ROI (ROI 950). 

 Normalization type ROI 950 Variability ROI 950 [%] Variability ROI 950 normalized [%] 

 1 HU 4 HU 64 Bins 32 Bins 1HU 4 HU 64 Bins 32 Bins 1 HU 4 HU 64 Bins 32 Bins 

Mean *Volume *Volume /Range /Range 2.20 3.06 8.30 8.32 1.81 1.90 5.56 7.56 

Variance *Volume *Volume /Range /Range 6.56 5.77 14.36 6.98 6.11 5.07 7.06 5.60 

Energy *Volume *Volume /Range /Range 11.03 10.73 21.86 16.27 10.59 10.30 14.13 15.87 

Auto correlation /Volume /Volume *Range *Range 5.22 5.18 14.27 13.85 4.57 4.53 7.79 7.38 

Prominence   *Range *Range 1.77 1.80 28.16 28.11   21.34 21.29 

Shade   *Range *Range 0.71 0.73 22.45 22.43   15.31 15.29 

Contrast   *Range *Range 1.30 1.25 14.52 13.01   6.99 5.46 

Correlation *Range *Range *Range *Range 8.52 6.83 8.33 8.21 2.23 2.97 5.40 7.11 

Tendency   *Range *Range 1.49 1.50 14.34 14.18   6.76 6.58 

Dissimilarity   *Range *Range 3.13 3.13 9.89 8.41   3.05 3.82 

Homogeneity 1   *Range *Range 2.88 2.32 5.81 3.52   2.72 2.26 

Homogeneity 2   *Range *Range 1.30 1.21 12.72 8.53   5.11 1.32 

Radiol Med Diagnost Imaging doi: 10.31487/j. RDI.2018.10.005     Volume 1(1): 5-8 



CT textural feature stability and discretization approach             6 

 

 

Table 4: The same as Table 1, but for the second heterogeneous ROI (ROI 1100) 

 Normalization type ROI 1100 Variability ROI 1100 [%] Variability ROI 1100 normalized [%] 

 1 HU 4 HU 64 Bins 32 Bins 1HU 4 HU 64 Bins 32 Bins 1 HU 4 HU 64 Bins 32 Bins 

Mean *Volume *Volume /Range /Range 5.02 3.25 15.52 14.55 4.07 3.87 6.56 8.53 

Variance *Volume *Volume /Range /Range 3.47 3.10 13.15 11.13 3.27 3.01 3.98 5.19 

Energy *Volume *Volume /Range /Range 5.31 5.16 11.69 12.65 5.01 4.95 4.96 11.29 

Auto correlation /Volume /Volume *Range *Range 22.56 22.56 33.65 33.12 21.04 21.03 25.84 25.45 

Prominence   *Range *Range 0.62 0.60 46.72 46.48   34.45 34.21 

Shade   *Range *Range 0.61 0.59 34.53 34.37   22.56 22.39 

Contrast   *Range *Range 1.42 1.43 21.33 20.69   9.97 9.38 

Correlation *Range *Range *Range *Range 10.37 10.52 17.29 15.38 5.23 3.26 6.72 7.49 

Tendency   *Range *Range 0.51 0.51 22.57 22.44   11.06 10.94 

Dissimilarity   *Range *Range 1.28 1.32 9.26 9.07   1.86 2.60 

Homogeneity 1   *Range *Range 1.19 1.01 5.97 4.34   4.68 6.25 

Homogeneity 2   *Range *Range 1.42 1.41 20.18 16.96   8.87 5.81 

Discussion 

 

The findings here in indicate that the variability of the imaging features 

derived from GLCMs depends on different factors. The first factor is the 

primary endpoint of this investigation – the GLCM discretization 

approach. The second factor is the feature normalization, where different 

normalization factors based on HU range or the volume of the textural 

object tend to reduce the imaging feature variability. The last factor that 

affects the imaging feature variability in conjunction with the first two 

factors mentioned above is the homogeneity of the textural object.  

 

Our results suggest that for homogeneous ROIs the variability of the 

fixed number of bins GLCMs features was somewhat lower than the 

variability of the features derived from fixed bin width GLCMs. The 

situation was exactly opposite for heterogeneous ROIs, where the 

features derived from fixed bin width GLCMs showed lower variability. 

The standard deviation of the HU over the homogeneous ROIs was 

around 1.5%, while for the heterogeneous ROIs it was over 4%. This 

suggests that probably around HU standard deviation of 2% to 3% there 

is a discrimination between feature variability interplay with the GLCM 

discretization approach and homogeneity of the textural object. 

 

To put that in perspective for application to real patients the data for HU 

variation for forty randomly chosen lung, head-and-neck (HN), prostate, 

and pancreas patients was compiled (ten per anatomical site). For each 

of those cases the HU standard deviation as well as the average HU value 

for the GTV, as outlined by the attending physician, was tallied. The HU 

variabilities for the lung, the HN, the prostate, and the pancreas cases 

ranged from 8% to 48%, 3.8% to 12.6%, 1.8% to 17%, and 1.9% to 26% 

respectively. Notably in one prostate and one pancreas cases the HU 

variability was as low as ~2%. These data suggest that for typical patient 

cases the use of textural features derived from fixed bin width GLCMs 

may be more suitable. Besides the fact the imaging feature variability for 

the fixed bin width GLCMs is lower for heterogeneous objects, the 

variability for fewer features is affected by different normalization 

factors. The date presented above indicate that only in five out of 

eighteen features the variability is reduced when scaling with object’s 

range for cluster contrast or volume for mean, variance, energy, and 

cluster auto correlation is employed. 

 

Conclusions 

 

Imaging biomarkers are an exciting new paradigm in cancer diagnosis 

and management. Successful application of those biomarkers requires 

comprehensive understanding of their properties and the effects of the 

different computational approaches, used to derive them. Biomarkers 

variability and susceptibility to different factors is an active area of 

research in the quantitative imaging community. In this work the 

variability of CT textural imaging features, derived from GLCMs, was 

investigated on phantom data. Thereby any physiological changes which 

may affect the presented results were excluded. It was found in the study 

that variability of twelve out of eighteen commonly used features is 

affected by the discretization approach of the image processing, where 

the features from fixed bin width GLCMs are influenced to a smaller 

extent than their counterparts derived from fixed number of bins 

GLCMs. This finding is very similar to the findings of other 

investigators, which discovered similar effect on positron emission 

tomography patient data.39 Furthermore, our phantom studies indicated 

that the two different discretization approaches in the GLCMs creation 

are affected differently depending on the homogeneity of the textural 

object. The fixed number of bins GLCMs produce less variable features 

for homogenous objects and vice-versa. Finally, the effects of different 

normalization parameters on the imaging feature variability were 

investigated and it was demonstrated that for realistic patient scenarios 

the use of fixed bin width GLCMs may be advantageous. 
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