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A B S T R A C T 

Background 

 

Leukemia is a malignant clonal disease of the hematopoietic system, 

which accounts for 4% of all cancers [1]. Among them, acute myeloid 

leukemia (AML) is a common and dangerous type of leukemia. 

Currently, chemotherapy is still the most important option for the 

treatment of AML. However, the emergence of multidrug resistance 

(MDR) and recurrence greatly limits the effects of chemotherapy drugs. 

Therefore, the research on MDR of AML cells has always been a 

research hotspot in hematology. In recent years, studies have found that 

the bone marrow microenvironment not only plays an important role in 

the hematopoietic process but is closely related to the occurrence and 

development of tumors. The bone marrow microenvironment contains 

multiple cell types, such as osteoblasts, mesenchymal stem cells, 

endothelial cells, neurons and so on. In normal humans, the bone marrow 

microenvironment affects hematopoietic stem cells mostly through the 
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regulation of blood oxygen partial pressure and the secretion of 

cytokines [2]. However, in cancer patients, the occurrence of MDR and 

recurrence is inseparable from the role of the bone marrow 

microenvironment.  

 

Leukemia and leukemia stem cells (LSCs) interact with the bone marrow 

microenvironment in a different way from hematopoietic stem cells to 

affect the development of leukemia [3]. LSCs can hide in the bone 

marrow niche to escape the killing effect of chemotherapy. As a result, 

the bone marrow niche has also become a key part of the recurrence and 

MDR of leukemia [4-6]. According to recent research, we have known 

that MDR mediated by the bone marrow microenvironment might stem 

from the following several mechanisms: i) The influence of cytokines; 

ii) Changes in adhesion of leukemia cells; iii) The regulation of 

expression of MDR-related genes; iv) The adjustment of cell cycle and 

metabolism [7-12]. In addition, many factors can also be contributed to 

the recurrence of leukemia, such as the secretion of cytokines or the 

changes with certain pathways.  

 

With the emergence and rapid development of high-throughput 

platforms and microarray, numerous molecular heterogeneities on AML 

have been acknowledged. In order to find potential key biomarker of 

AML related to the bone marrow microenvironment mediated poor 

prognosis, through the use of biological information technology and the 

analysis of high-throughput sequencing chip data, we screened out the 

differentially expressed genes (DEGs) of AML cells cultured alone and 

co-cultured with stromal cells, which were all treated with different 

concentrations of Arsenic trioxide (ATO). Furthermore, we pick up 

ITGB1 as a hub gene that can be considered as the predictor of prognosis. 

We systematically reveal the occurrence and development of AML at the 

level of the molecule and provide potential guidance for targeted 

therapy. 

 

Materials and Methods 

 

I Analysis and Screening of Differentially Expressed Genes 

(DEGs) 

 

The GEO database (Link 1) of the National Center for Biotechnology 

Information was used to select and download the gene express profile 

GSE73157 [13]. This profile was generated on the platform GPL17077 

(Agilent-039494 SurePrint G3 Human GE v2 8*60K Microarray 

039381). In order to reduce false-positive results, the online analysis tool 

GEO2R in the GEO database was used to process the data profile. The 

screen criteria were adjusted p-value < 0.05 and the use of Benjamini-

Hochberg. Then, the R package ‘limma’ was used to differentiate the 

DEGs between NB4 cultured alone and co-cultured with stromal cells 

after the treatment of ATO. The screen criteria were adjusted p-value < 

0.05 and [log2FoldChange (log2FC)] > 1 [14]. All genes were visualized 

by volcanic maps and the top 50 dramatically differentially expressed 

genes were selected to draw a heatmap by R package ‘ggplot2’ [15].  

 

II Functional Enrichment Analysis and Pathway Analysis of 

DEGs 

 

The R package ‘clusterProfiler’ was used to conduct Gene Ontology 

(GO) enrichment analysis and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis in order to perform functional 

enrichment and pathway analysis of DEGs [16]. Biological process (BP), 

molecular function (MF) and cellular component (CC) are included in 

GO enrichment. Analysis results were illustrated as figures by R package 

‘GOplot’ [17]. A p-value less than 0.05 was considered statistically 

significant. Also, the ClueGo plug-ins of Cytoscape software 3.8.1 were 

utilized to display the relationship between pathways [18]. A p-value less 

than 0.05 was considered statistically significant. 

 

III Screening Candidate Genes Through Protein-Protein 

Interaction (PPI) Network 

 

The PPI prediction website STRING (Link 2) constructed a protein 

interaction network [19]. And Cytoscape software 3.8.0 was used to 

visualize the interactions of DEGs [18]. Further, we used ‘cytoHubba’ 

to degree the interaction of hub-gene clustering by the method of 

Maxima Clique Centrality (MCC). Overlapped genes were separated by 

online toll Bioinformatics & Evolutionary Genomics (Link 3) and were 

displayed by Wayne diagram. 

 

IV Selecting Candidate Genes and Conducting Survival 

Analysis 

 

In order to evaluate the prognostic value of candidate genes in AML 

patients, we utilized the PrognoScan database (Link 4) and online tool 

Gene Expression Profiling Interaction Analysis (Link 5) to conduct the 

survival analysis [20, 21]. The results are displayed with a hazard ratio 

(HR) and Cox p-value from a Log-rank test. Cox p-value <0.05 was 

considered statistically significant. Besides, according to the online tool 

Gene Expression Profiling Interaction Analysis (GEPIA), we compared 

the expression of candidate genes in AML patients and normal people. 

The screen criteria were adjusted p-value < 0.01 and [log2FoldChange 

(log2FC)] > 1. 

 

Results 

 

I Analysis and Screening of Differentially Expressed Genes 

(DEGs) 

 

The goal of this study is to screen out the hub gene of AML related to 

the bone marrow microenvironment mediated MDR (Figure 1). 

Performing statistical analysis on the GEO database, we found that the 

data set GSE73157contains 32080 DEGs in AML cultured alone groups 

and co-cultured groups (All the following are referred to as alone groups 

and co-culture groups, respectively). By using the R package ‘limma’, 

DEGs were classified as up-regulated genes (marked as red plots) and 

down-regulated genes (marked as green plots) (Figure 2a). Besides, a 

heatmap illustrated the top 50 DEGs (Figure 2b). 

 

II Functional Enrichment Analysis and Pathway Analysis of 

DEGs 

 

Go and KEGG enrichment analysis was performed on all DEGs with R 

package ‘clusterProfiler’. The results of GO include three subontologies 

referred to as biological process (BP), cellular components (CC), 

molecular function (MF). The GO results show that the angiogenesis 

pathway, cell adhesion molecule binding pathway and collagen-

https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://dna00.bio.kyutech.ac.jp/PrognoScan/
http://gepia.cancer-pku.cn/index.html
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containing extracellular matrix pathway were selected as the most 

significant pathway in each subontologies, respectively (Figures 3a-3c). 

And we chose the angiogenesis pathway as our further analysis pathway 

as a result of the comparation of p-values. 177 genes were found 

enriched in this GO term. In addition, the PI3K-Akt signaling pathway 

was the top enriched pathway of the DEGs in KEGG enrichment analysis 

(Figure 3d). After we used the ClueGo to further analyse the interrelation 

of the enriched pathways and the DEGs, the PI3K-Akt signaling pathway 

was still the most significant pathway and involved 120 DEGs (Figures 

3e & 3f). Finally, we selected two pathways for our further research, 

which involved 177 and 120 DEGs, respectively (Table 1). Then, after 

taking the intersection of the DEGs included in the two pathways, we 

could find that there are 26 genes included both in the two pathways 

(Figure 3g). They were PDGFRB, FLT1, NGFR, EFNA1, FGFR1, 

ITGB1, VEGFC, BRCA1, PDGFRA, PGF, EPHA2, EFNA3, PIK3CG, 

SYK, EREG, PTK2, ITGB8, FGF2, THBS1, FGF18, THBS2, AKT3, IL6, 

ANGPT1, FN1, ANGPT2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic view of the procedure of the study with GSE73157. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Identification of differentially expressed genes in the GSE73157 dataset. a) Volcano plot of GSE73157 dataset. Red plots represent up-regulated 

genes, and the green plots represent down-regulated ones with adjusted p-value < 0.05 and [log2FoldChange (log2FC)] > 1. Other plots represent the 

remaining genes with no significant difference. b) Heatmap of the top 50 DEGs (50 up- and 50 down-regulated genes). 
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Figure 3: GO and KEGG enrichment analysis a) The GO biological process (BP) enrichment analysis. b) The GO molecular function (MF) analysis. c) The 

GO cellular component (CC) enrichment analysis. d) The KEGG enrichment analysis. e) The interrelation between pathways of KEGG. f) Venn diagram 

showed the common gene of candidate genes. g) Numbers of genes enriched in the certain pathway. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of 

Genes and Genomes. 
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Table 1: DEGs identified from selected pathways of GO and KEGG. 

DEGs Genes 

Angiogenes

is pathway 

ABL1, ACVR1, ACVRL1, ADM, AKT3, AMOTL2, ANG, ANGPTL4, ANGPTL6, ANXA2, AQP1, ARHGAP22, C3, CARD10, CAV1, 

CCBE1, CCL2, CD40, CDH13, CELA1, CHI3L1, CHRNA7, COL18A1, COL8A2, CYP1B1, DCN, DDAH1, DLL4, E2F7, ECM1, EFNA1, 

EFNA3, EGFL7, ELK3, EMP2, ENPP2, EPAS1, EPHA2, EPHB2, EREG, ESM1, FAP, FGF2, FLT1, FN1, FZD5, GATA6, GBX2, 

GPNMB, GPR4, GREM1, HDAC9, HEY1, HLA-G, HMOX1, HOXB13, HPSE, HTATIP2, ID1, IL18, IL1A, IL1B, IL6, ITGAX, ITGB1, 

ITGB2, ITGB8, KLF5, LEF1, LOXL2, LRG1, MAPK14, MDK, MFGE8, MMP14, MMP2, NFATC4, NGFR, NOTCH3, NRP1, NRP2, 

PARVA, PDGFRA, PDGFRB, PGF, PGK1, PLCD1, PLK2, PPARG, PRKD2, PTGS2, PTK2, PTN, PTPRM, RAMP3, RBM15, RHOB, 

RNF213, RORA, RRAS, SASH1, SAT, SERPINE1, SERPINF1, SFRP1, SFRP2, SMAD1, SOX17, SPARC, SRPX2, SYNJ2BP, TGFBI, 

THBS1, THBS2, THY1, TIE1, TNFAIP3, TNFSF12, TWIST1, VASH1, VEGFC, WNT5A, ADM2, AGGF1, ANGPT1, ANGPT2, BRCA1, 

CCR2, CX3CL1, CXCR2, CYBB, DAB2IP, DAG1, ECSCR, EFNB2, EMILIN1, EPHA1, F3, FBXW7, FGF18, FGFBP1, FGFR1, FOXJ2, 

GATA2, GPLD1, HHEX, HOXA7, IHH, JAG1, JUN, KRIT1, LEMD3, MAPK7, MED1, NCL, NOTCH4, NPPB, NRAR, PDE3B, PIK3CG, 

PKNOX1, POFUT1, PRKX, ROCK2, SETD2, SIRT1, SOX18, SPRED1, SPRY2, SRF, STAB1, SYK, TBX1, TERT, TGFBR1, THSD7A, 

UBP1 

PI3K-Akt 

signaling 

pathway 

TCL1B, GNGT2, OSMR, GNG11, GNG10, IGF2, IGF1R, LAMB2, LAMB3, BCL2, GNG7, F2R,, LAMA1, COL9A3, MYB, LAMA4, 

EIF4EBP1, LAMB1, ITGA11, THBS1, PDGFRA, THBS2, TNC, GNG12, pik3ap1, INSR, FGF18, LPAR1, RXRA, MET, HRAS, LPAR5, 

HSP90B1, AREG, KIT, CCND2, PDGFC, FLT3, RPTOR, FLT1, PDGFRB, LPAR4, PIK3CG, PIK3R1, CCNE2, ITGA1, IKBKB, FN1, 

AKT3, SOS2, IRS1, CREB3, CDC37, KITLG, NRAS, IL3RA, Ifna4, CDK6, IL2RB, NGFR, CDK4, BRCA1, IL2RA, JAK2, THEM4, JAK3, 

EREG, ITGA2B, ITGA3, TLR4, ITGB4, MAPK3, ITGB5, CREB3L2, ITGB7, PIK3R5, IL6R, ANGPT1, TLR2, ANGPT2, EFNA1, GYS2, 

IL6, CDKN1A, TSC2ITGB1, PGF, YWHAB, PTK2, EFNA3, NFKB1, SPP1, SYK, VEGFC, CSF3, GNG2, FGF2, LAMC3, IFNB1 

 

III Screening Candidate Genes Through Protein-Protein 

Interaction (PPI) Network 

 

In order to further understand the DEGs, we displayed the protein-

protein interaction (PPI) network, including all the DEGs in the two 

selected pathways mentioned above in STRING (Figures 4a & 4b). 

Then, cytoHubba plug-ins in Cytoscape were also used to screen out the 

top 30 candidate hub genes of each pathway according to nodes rank 

(Figures 4c & 4d), and all the top hub genes have been listed in (Table 

2). In this part, we identified 4 common genes in the two sets of top 30 

hub genes, including FN1, THBS1, ITGB1 and THBS2, as candidate hub 

genes. 

 

Table 2: The top 30 genes with the highest score of each pathway through the Cytoscape “cytoHubba” module analysis. 

Angiogenesis pathway PI3K-Akt signaling pathway 

Rank Name Score Rank Name Score 

1 FN1 1.68E+08 1 PTK2 7.42E+14 

2 CCL2 1.67E+08 2 ITGB1 7.42E+14 

3 MMP2 1.65E+08 3 ITGA3 7.42E+14 

4 FGF2 1.58E+08 4 ITGA1 7.42E+14 

5 SERPINE1 1.38E+08 5 ITGA2B 7.42E+14 

6 THBS1 1.33E+08 6 ITGB5 7.42E+14 

7 IL6 1.24E+08 6 ITGA11 7.42E+14 

8 VEGFC 1.21E+08 8 ITGB7 7.42E+14 

9 FLT1 1.07E+08 9 ITGB4 7.40E+14 

10 PGF 1.07E+08 10 ITGB8 7.40E+14 

11 ANGPT2 1.04E+08 10 ITGA10 7.40E+14 

12 ANGPT1 1.00E+08 12 COL1A1 7.18E+14 

13 PTGS2 6.38E+07 13 COL1A2 7.17E+14 

14 COL18A1 4.98E+07 14 COL6A1 7.17E+14 

15 IL1B 4.08E+07 15 COL6A3 7.15E+14 

16 JUN 3.63E+07 16 COL6A2 7.14E+14 

17 HMOX1 3.31E+07 17 LAMA4 3.83E+14 

18 MMP14 2.35E+07 18 LAMB1 3.82E+14 

19 PPARG 2.18E+07 19 THBS2 3.58E+14 

20 CAV1 1.86E+07 20 COL9A3 3.56E+14 

21 IL18 1.73E+07 21 LAMB2 2.37E+13 

22 MAPK14 1.58E+07 22 LAMA1 2.36E+13 

23 ITGB1 1.34E+07 23 LAMC3 2.10E+13 

24 PDGFRB 1.30E+07 24 LAMB3 2.09E+13 

25 SIRT1 1.10E+07 25 THBS1 3.95E+12 
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26 F3 7622520 26 SPP1 1.58E+12 

27 ANG 7258344 27 FN1 1.43E+12 

28 THBS2 6250378 28 TNC 9.39E+10 

29 IL1A 5449080 29 PIK3CG 6.24E+09 

30 CYBB 3774960 30 PIK3R1 6.24E+09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Protein-protein interaction (PPI) analysis a) Genes identified from angiogenesis pathway. b) Genes identified from PI3K-Akt signaling pathway. 

c) Analysis of the interaction of top 30 genes from angiogenesis pathway. d) Analysis of the interaction of top 30 genes from PI3K-Akt signaling pathway. 

 

IV Selecting Candidate Genes and Conducting Survival 

Analysis 

 

Subsequently, the correlation between hub genes and prognosis of AML 

patients was analysed through PrognoScan and GEPIA online survival 

website. The results showed that except for the ITGB1 gene, as the result 

of no survival significance, the other genes were removed. We found that 

patients with high expression of ITGB1 had significantly longer overall 

survival (OS) than those with low expression (COX p-value= 0.016730) 

(Figures 5a & 5b). Besides, through the online website GEPIA, we 

performed a visual analysis of the expression of hub gene ITGB1 in the 

TCGA database in AML patients and normal people, showing that the 

expression of the ITGB1 gene in AML patients is lower than that in 

normal people significantly (p-value<0.01) (Figure 5c).  
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Figure 5: Analysis of selected hub gene ITGB1. a) Kaplan-Meier survival curves comparing high and low expression of ITGB1 in AML patients with 

PrognoScan (COX p-value= 0.016730). b) Survival analysis curves comparing high and low expression of ITGB1 in AML patients with GEPIA (p-value 

<0.05). c) Comparation the expression of ITGB1 of AML patients and normal people (p-value <0.01). 

 

Discussion 

 

With the elucidation of molecular mechanisms and the emergence of 

targeted therapies, the treatment of AML has made great progress, and 

the overall survival rate of patients has been significantly improved. 

However, the resistance of leukemia cells and the recurrence after 

treatment are still two major problems that plague us. We now believe 

that the protective effect of leukemia stem cells (LSCs) mediated by the 

bone marrow microenvironment is also an important factor for the 

refractory and recurrence of leukemia. Recent studies have shown that 

there is a complex interaction between leukemia cells and the bone 

marrow microenvironment. The two induce and support each other, 

which together lead to the occurrence and development of the disease.  

 

In this study, we analysed 32080 DEGs between cultured alone and co-

cultured with stomal cells AML cells based on the GSE73157 dataset. 

Then, we used GO enrichment analysis and KEGG pathway analysis to 

detect the dataset to explore the interaction between DEGs. GO analysis 

showed that these genes mainly reacted with the process of angiogenesis, 

collagen-containing extracellular matrix production and cytokine 

binding, suggesting that these DEGs may be involved in improving the 

ability of tumor cells to migrate and invade, promoting metastasis, 

recurrence and multiple drug resistance of cancer [22, 23]. KEGG 

analysis illustrated that 120 DEGs mainly affect the AML cells through 

the PI3K-Akt signaling pathway. As we all know, the 

phosphatidylinositol 3-kinase/protein kinase B/mammalian target of 

rapamycin (PI3K/Akt/mTOR) signaling pathway is over-activated in 

hematological malignancies, and the development of inhibitors of the 

PI3K/Akt/mTOR signaling pathway has become a common concern for 

hematology researchers in recent years [24]. Excessive activation of this 

pathway may promote tumor proliferation and weaken the immune 

monitoring of tumor cells [25]. At the same time, we utilized the online 

tool STRING to display the functional interaction between proteins to 

discover the underlying mechanism of occurrence of the development of 

AML. And then, using the software Cytoscape 3.8.1 to analyse the 

protein interaction network diagram, we screened out FN1, THBS1, 

ITGB1, THBS2 as 4 candidate hub genes. The above 4 candidate genes 

not only interact closely with other genes but may also determine the 

functions of other genes. After further survival analysis of the 4 selected 

genes, we found that only the ITGB1 gene is statistically significant. We 

found that the expression of ITGB1 is negatively correlated with the 

prognosis of AML. Furthermore, compared with normal people, the 

expression of ITGB1 is significantly lower in AML patients. That is, 

ITGB1 may be a key gene for evaluating the prognosis and conducting 

targeted therapy of AML patients. 

 

A huge amount of evidence shows that integrin family molecules are 

involved in the occurrence and development of tumors and play an 

important role in regulating tumor cell proliferation, invasion and 

metastasis and other biological behaviours [26]. Integrin β1 (ITGB1) is 

a relatively important part of molecules in the cell adhesion molecule 

family and is the main receptor that mediates the interaction between 

cells and the extracellular matrix. This saying is consistent with our 

above analysis results: the bone marrow microenvironment may affect 

AML cells by regulating cell adhesion molecules and extracellular 

matrix. At present, our understanding of ITGB1 is limited to the primary 

stage, and its biological functions are not yet very clear. In the direction 

of solid tumors, there are certain studies on the direction of ITGB1, but 

there are few reports on the research of ITGB1 of hematological tumors 

in the world. In summary, ITGB1 may be a potential marker for 

predicting and guiding the treatment of AML, which requires further 

attention and research. 

 

Conclusion 

 

In summary, ITGB1 was a hub gene related to the bone 

microenvironment mediated poor prognosis in AML. The expression of 

ITGB1 was negatively correlated with the prognosis of AML. This study 

used bioinformatics methods to analyse the relevant data of AML 

research to obtain potential markers for predicting and guiding AML 

treatment, which provides a theoretical basis for a deeper understanding 

of the occurrence and development of AML, and also give the follow-up 

animal experiments and clinical trials research directions. 
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