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A B S T R A C T 

The balance of bone formation by osteoblasts and bone resorption by osteoclasts is important for bone 

homeostasis. Pathologic high activity of osteoclasts and repression of bone osteoblastic bone formation 

result in bone metabolic diseases such as periodontal disease. To understand the mechanism of osteoblast 

and osteoclast function leads to establishment of therapy for bone metabolic disease. A tyrosine kinase Src 

deficient mice shows osteopetrosis because of defect bone resorbing activity and acceleration bone 

formation. This indicates Src is a key molecule to regulate bone resorption and bone formation. We discuss 

about the role of Src in osteoclast and osteoblast and entire bone metabolism. 

 

Introduction 

Bone formation by osteoblast and bone resorption by osteoclasts are 

coordinately regulates bone homeostasis [1]. Accentuation of bone 

resorption compared with bone formation results in metabolic bone 

disease such as osteoporosis, rheumatoid arthritis and periodontitis [1-

3]. Abnormal bone formation by osteoblast due to tooth ankylosis in 

dental field [4]. Thus, the normal activity balance between osteoclasts 

and osteoblasts are important in health promotion. The tyrosine Src 

deficient mice show osteopetrosis because of decreased osteoclastic 

bone resorption activity and osteoblastic bone formation acceleration [5-

7]. This indicates Src is one of the important regulators of bone 

homeostasis. Understanding of the molecular role of Src will develop 

methods of treatment for the bone metabolic disease. 

 

The role of Src in osteoclasts 

 

 Src plays important role in cell proliferation, cell growth, cell spreading 

several systems in many tissues [12-19]. On the other hand, expression 

level and activation is very high in osteoclasts [20]. This shows there is 

unique regulatory mechanism of Src in osteoclasts. In many tissues, c-

terminal Src kinase (Csk) phosphorylates the tyrosine in Src c-terminal 

and negatively regulates Src kinase activity [14]. Even though Csk is 

expressed as much as other tissue, Src activity is highly regulated in 

osteoclasts. Src is localized around cell membrane by myristoylation or 

palmitoylation of its n-terminal. On the other hand, Csk is ubiquitously 

localized in cytoplasm because Csk does not have transmembrane 

domain. Phosphoprotein membrane anchor with glycosphingolipid 

microdomains 1 (PAG) / Csk binding protein (Cbp) binds Csk and 

recruits Csk when Csk inhibits Src activity [21]. In osteoclasts, Cbp 

expression is suppressed by Receptor activator NF-κB ligand (RANKL) 

during osteoclast differentiation. As the results, Csk cannot be localize 

in cell membrane and regulate Src activity [16]. In recent study, Src 

localization is regulated by protein phosphatase 1 regulatory protein 18 

(PPP18) and Protein phosphatase 1 (PP1) complex through 

dephosphorylation of Serine residue of Src n-terminal domain [17]. 

Actin ring formation and bone resorbing activity of osteoclasts are 

suppressed due to separation of Src from cell membrane by PPP1r18 and 

PP1 complex [17]. 
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and cell migration [7-11]. However, only phenotype Src deficient mice 

have is osteopetrosis because of defect of bone resorption and activation 

of bone formation [6, 7]. Src has 8 family members and these family 

members may complement the role of Src in many tissues. The 

expression and activation of Src is strictly regulated lower level by 
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Osteoclasts loss attachment to bone matrix at sealing zone and acidic 

environment to bone resorption, although osteoclasts are differentiated 

and survive in Src deficient mice. Moreover, Src deficient osteoclasts 

did not form a characteristic actin structure, actin ring corresponding 

with sealing zone because of disturbance of actin organization in vitro 

[16, 22]. This indicate Src regulates actin organization although Src does 

not have actin binding domain [10]. Thus, it needs some actin regulatory 

proteins in regulation of actin ring formation by Src in osteoclasts. Src 

makes complex with many proteins such as Cortactin, p130Cas, c-Cbl, 

Cbl-b, Pyk2, Dynamin and Vav3 to promote actin ring formation [23-

27]. Recently, an actin binding protein Plectin is reported as a Src 

binding and actin ring regulatory protein [28, 29]. These proteins are 

essential for actin ring formation and bone resorption. 

 

The role of Src in osteoblasts and osteocytes  

 

 Src expression and activity is not so higher in osteoblasts and osteocytes 

than other tissues. However, bone formation by osteoblasts is promoted 

in Src deficient mice [5]. This result indicates Src has a specific role in 

osteoblasts. The transcriptional factor runt related transcription factor 2 

(Runx2) is essential for osteoblast differentiation and plays master 

regulator of osteoblast differentiation and bone formation [30]. Runx2 

localization to nuclear and transcriptional activity is inhibited by binding 

to Yes associated protein 1 (YAP) through YAP phosphorylation by Src 

[31]. This study indicates Src plays as inhibitory protein of Runx2 in 

osteoblasts. On the other hand, it is reported that Src phosphorylates 

Osterix, a transcriptional factor that is essential for osteoblast 

differentiation subsequent to Runx2 activation and up-regulates Osterix 

nuclear localization and osteoblast differentiation [32, 33]. Together, Src 

has functions both activation and inhibition of osteoblast differentiation. 

To think of the phonotype of Src deficient mice, other Src family kinase 

may be rescue Osterix nuclear localization but may not interrupt Runx2 

activation.  

 

Osteocytes are differentiated from osteoblasts and regulates balance of 

bone remodeling [1]. Osteocytes receive mechanical stress and regulates 

bone mass [34, 35]. Src suppresses anabolic gene expression in 

osteocytes under mechanical loading [36]. 

 

Altogether, Src promotes osteoclastic bone resorption and suppress 

osteoblast function (Figure). Regulation of Src function is one of the 

targets of therapy for periodontal disease and other bone metabolic 

disease. Src inhibitor is one of the candidates of treatment [37]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Schema of Src function in osteoclast, osteoblast and osteocyte. Src plays central role in osteoclastic bone resorption through actin organization. Src 

is a negative regulator of Runx2 transcriptional activity and osteoblast differentiation. Src also receives mechanical stress and regulates bone homeostasis 

in osteocyte. 
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