Case Report

A Rare Paraneoplastic Syndrome That Presages a Poor Prognosis in Urothelial Carcinoma: A Case Report

Léo Duez*, Kenza El Alaoui1, Céline Sergeant1, Marc Hildebrand1 and Ziad El Ali2

1Department of Internal Medicine, IRIS Hospitals South, Brussels, Belgium
2Department of Medical Oncology, IRIS Hospitals South, Brussels, Belgium

A 53-year-old smoker man with a newly diagnosed generalized high-grade invasive urothelial carcinoma was admitted to our Internal Medicine ward for the management of hypercalcaemia. Two months earlier, the patient had benefited from a right nephroureterectomy with partial cystectomy for urothelial carcinoma infiltrating the distal right ureter (Figure 1A, 1B, and 2). A positron-emission tomographycomputed tomography (PET-CT) with fluorodeoxyglucose F18 (18F-FDG) performed 2 days before this admission revealed a massive peritoneal carcinomatosis with subcutaneous metastases, but no bone metastasis (Figure 3). Apart from hypercalcaemia at 3.71 mmol/L (normal value: 2.05-2.55 mmol/L), the laboratory tests showed a leucocytosis of 30.42x10³/mm³, a thrombocytosis of 400x10³/mm³ and elevated C-reactive protein (CRP) of 76.6 mg/L (normal value: <5 mg/L). Despite no obvious cause of infection, the patient was treated with antibiotics until microbiological samples returned negative. In the work-up of hypercalcaemia, intact parathyroid hormone (PTH) was low (8 ng/L, normal value: 15-65 ng/L), and PTH related protein (PTHrP) was elevated (38.8 pg/mL, normal value: < 20 pg/mL). He was diagnosed with a hypercalcaemia due to a paraneoplastic secretion of PTHrP, which was treated with intravenous saline solution. The patient also received two courses of chemotherapy (Carboplatin-Gemcitabine) without human granulocyte colony stimulating factor (G-CSF) administration.

Bisphosphonates were postponed because of poor oral hygiene and elevation of hypercalcaemia, intact parathyroid hormone (PTH) was low (8 ng/L, normal value: 15-65 ng/L), and PTH related protein (PTHrP) was elevated (38.8 pg/mL, normal value: < 20 pg/mL). He was diagnosed with a hypercalcaemia due to a paraneoplastic secretion of PTHrP, which was treated with intravenous saline solution. The patient also received two courses of chemotherapy (Carboplatin-Gemcitabine) without human granulocyte colony stimulating factor (G-CSF) administration. Bisphosphonates were postponed because of poor oral hygiene and

*Correspondence to: Léo Duez, Department of Internal Medicine, IRIS Hospitals South, Brussels, Belgium; E-mail: leo.duez@ulb.be

© 2019 Léo Duez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Hosting by Science Repository. All rights reserved.

http://dx.doi.org/10.31487/3.COR.2019.05.03
because calcaemia had decreased after the 2 courses of chemotherapy (but was not totally normalized). He left our inpatient department with a follow-up in the Oncology outpatient clinic. Ten days later he came back to the emergency department for confusion, fatigue, diffuse abdominal pain and nausea. Abdominal subcutaneous masses, already palpable during the previous stay, had increased in size and abdomen was painful and distended. Abdominal CT-scan confirmed an increase in metastases size (Figure 1C) Laboratory tests revealed a leukocytosis of 67 x 10^3/mm³ WBC, mainly neutrophils (60.5 x 10^3/mm³) (normal value: 1.50-6.70 x10³/mm³), a thrombocytosis of 693x10³/mm³ platelets, together with a massive hypercalcaemia of 5.05 mmol/L (Figure 4). No signs of infection could explain the leukocytosis and all microbiological samples remained negative. A paraneoplastic leukemoid reaction (LR) was suspected and no antibiotics were given. Our patient still did not complain of any bone pain that could suggest bone metastasis. This time, as hypercalcaemia was severe and symptomatic, the patient received bisphosphonates (zolodronic acid) with a rapid decrease in its level (Figure 4). The increase of all three biological parameters at second admission (calcaemia, WBC count, platelet count, Figure 4) was correlated to the increase in tumor size radiologically and to the fast clinical deterioration. Eventually, due to the extremely rapid cancer progression despite chemotherapy, the low patient’s performance status and according to his wish, he was transferred to palliative care and died 20 days after this second admission and 4 months after diagnosis.

Figure 1: Tomography evolution of tumor.

Figure 2: Histology of high grade invasive urothelial carcinoma.

Figure 3: PET-CT ¹⁸F-FDG.

Figure 4: Evolution of calcaemia, white Blood Cell (WBC) and Platelet Count. Calcaemia normal value: 2.05-2.55 mmol/L, WBC normal value:4.00-10.00x10³/mm³, platelet count normal value: 150-400x10³/mm³.

Discussion

Hypercalcaemia is common in patients with cancer, occurring in
approximately 20 to 30% of cases [2]. There are two main mechanisms by which hypercalcaemia of malignancy can occur: osteolytic metastasis with local release of cytokines (~20%) and tumor secretion of PTHrP (~80%) as described in this case [2].

A LR is defined by a leukocytosis with WBC count over 50 x 10^9/mm³ and the diagnosis is based on the exclusion of chronic myelogenous leukemia (CML) and chronic neutrophilic leukemia (CNL) [3]. Malignancy-associated LR is commonly observed in a variety of carcinomas, especially in lung and kidney cancers [3]. In this case, as CML and CNL were highly unlikely and after exclusion of infection, paraneoplastic LR was considered.

Leukocytosis and hypercalcaemia are two of the most common paraneoplastic syndrome but association of both is rarely described and is particularly exceptional in urothelial carcinoma [5, 6-13]. In a series of 1149 lung cancer patients, Hiraki et al. studied hypercalcaemia and leukocytosis [5]. Their study revealed that 65 (5.7%) patients had hypercalcaemia alone, 16 patients (1.4%) leukocytosis alone and only six patients (0.5%) both hypercalcaemia and leukocytosis. Survival in patients with hypercalcaemia-leukocytosis syndrome was significantly shorter (P < 0.001) than in patients without hypercalcaemia and leukocytosis or with hypercalcaemia alone, with a median survival time of 1.5 months. On the other hand, there was no significant difference in survival time between patients with hypercalcaemia —leukocytosis syndrome and patients with leukocytosis alone (P = 0.47).

In a large prospective study of 1410 patients with a histologic diagnosis of urothelial carcinoma, Izard et al. focused on paraneoplastic leukocytosis [6]. Nine patients (0.6%) presented with paraneoplastic leukocytosis (defined by WBC count over 20 x 10^9/mm³ on 2 occasions separated by 30 days) and only 6 patients (0.4%) were diagnosed with hypercalcaemia-leukocytosis syndrome. Local and systemic therapies produced transient responses in some patients’ WBC counts, followed by rapid recurrence of leukocytosis after cessation of the therapy, suggesting that the response could have been linked to the myelosuppression rather than to the tumoricidal activity. Other experiences suggest that recurrence of leukocytosis after local and systemic therapy is associated with clinical and radiological progression of the disease and could be the first sign of relapse after initial response to treatment.

Pathophysiology of this paraneoplastic syndrome remains unclear but secretion of PTHrp and cytokines such as G-CSF (a hematopoietic growth factor that causes leukocytosis) or other interleukine-mediated mechanisms might be implicated [5, 6]. In this case, G-CSF testing was not done because the patient’s condition deteriorated rapidly. However, parallel evolution of calcaemia, WBC (Figure 4) and pejorative evolution of cancer seems to indicate that it is a paraneoplastic leukocytosis. Many different solid tumors can also enhance thrombocytosis, through cytokines production and TPO (thrombopoietin) receptor activation [4]. In our case, the parallel evolution of the platelet count, the WBC count, the calcaemia (Figure 4), the increase in tumor size (Figure 4) and the rapid clinical deterioration suggests a common phenomenon.

Only 13 cases of urothelial carcinoma associated with hypercalcaemia-leukocytosis syndrome were reported in the literature and to the best of our knowledge, less than 10 cases (including our patient) of urothelial carcinoma associated with hypercalcaemia-leukocytosis-thrombocytosis syndrome have been described [6, 13-15]. This triple association is thus rarer than the association of hypercalcaemia-leukocytosis, which is already known of poor prognosis [5]. Data is missing regarding the prognosis of the triple association, thus reports of cases are crucial for a better understanding of the phenomena.

Conclusion

Although very rare, this paraneoplastic syndrome should be considered in these patients presenting with concomitant hypercalcaemia, leukocytosis and thrombocytosis, because it presages a poor prognosis with a rapid disease progression and the triple association should be looked for and when present taken into account in the management of urothelial carcinoma, where no biological prognostic marker is available in clinical practice.

Conflicts of interest

None.

Acknowledgement

Dr Akiki P., MD (Clinical biologist) and Dr Sirtaine N., MD (Pathologist) for their contribution.

REFERENCES


