Case Report

A Child with Primary Leptomeningeal Melanoma

Álvaro Pimenta Dutra1*, Marcos Grijalda Pitangu1, Angelo Raphael Tolentino de Rezende2, Renato Pacheco de Melo2, Eric Grossi Morato3 and Luiz Fernando Fonseca2

1General Pediatric Service of the João Paulo II Children’s Hospital/FHEMIG, (Hospital Infantil João Paulo II/Fundacao Hospitalar de Minas Gerais), Brazil
2Pediatric Neurology Service of the João Paulo II Children’s Hospital/FHEMIG, Brazil
3Neurosurgery Service of the Clinical Hospital in Federal University of the Minas Gerais (HC-UFMG), Brazil

ABSTRACT

Primary malignant melanoma of the meninges is an exceedingly rare neoplasm. Usually its symptoms include raised intracranial pressure resulting from hydrocephalus secondary to tumoral obliteration of cisternal basal cisterns, but the passage of time from initial symptomatology to diagnosis is frequently delayed. A 12-year-old male with primary leptomeningeal melanoma is reported. At the beginning, he presented with vomiting, headache, complex seizures, fever four months before the admission in the hospital where progressive loss of consciousness after admission. Lumbar puncture revealed high protein level, normal glucose level and 50 leucocytes/mm3 with 86% polymorphonuclear cells. Magnetic resonance imaging of the brain was referred and in T1-weighted images revealed a diffuse enhancement of the leptomeninges on right frontal cortical. An open brain biopsy trough was performed, after exclusion of the infectious nervous system disease. Histological examination revealed massive infiltration of meninges with brown tumor cells. These cells stained positive for HMB-45, S-100 protein and vimentin. The patient received post operative radiation therapy, but died after three months of the diagnosis with septic shock and epileptical status.

Introduction

Primary leptomeningeal melanoma (PLM) is a rare and agressive tumor in children and accounts for less than 1% of all pediatric malignancies, that originates from pial melanin-bering cells typically along the cerebral convexities or at the base of the brain [1].

Since the first description by Virchow in 1859, approximately 230 cases of the primary leptomeningeal melanoma have been reported [2, 3]. A population study in Norway covering a 30-year period (1955-1984) identified six definite cases – an incidence of 0.005 new cases per year [4]. In this study, there was only one patient who presented under the age of 20 years, illustrating the rarity of this lesion in children. The gender incidence in these tumors seems equal, and there are no convincing data suggest a racial predominance [4].

Approximately 75% of patients with primary leptomeningeal melanoma lack any significant concomitant lesion [5]. The typical neurological manifestations of leptomeningeal melanoma include seizures, psychiatric disturbances, and symptoms and signs of raised intracranial pressure secondary to hydrocephalus [3, 6–8].

In this report, we describe a child in whom the diagnosis of primary leptomeningeal melanoma was made by an open brain biopsy, after exclusion of the infectious nervous system disease.

Case Report

A 12-year-old boy was admitted previously well, presented with 4-month history of vomiting, intermittent fever and headache. He had been admitted to another hospital six times with same history but in the last admission, he presented with generalized seizures.
On admission he was drowsy, obeyed commands, left hemiparesis, depressed deep tendon reflexes, no signs of papilledema and cranial nerves were normal. Lumbar puncture revealed high protein level 90 mg/dl, normal glucose level 53 mg/dl and 50 leukocytes/mm3 with 86% polymorphonuclear cells, 25 erythrocytes/mm3 and no malignant cells. He was initially treated with intravenous Ceftriaxone and Acyclovir, but six hours after admission he suffered a dramatic decline in consciousness (Glasgow coma scale 3), then was admitted to the pediatric intensive care unit. Cranial computed tomography (CT) disclosed diffuse meningeal enhancement consistent with diagnosis of meningoencephalitis without signs of raised intracranial pressure. Further extensive infection screen, including CSF and blood studies, was negative (including bacteria, viruses, atypical organisms, and fungi).

Cranial magnetic resonance imaging (MRI) (Figure 1) was obtained, which revealed diffuse enhancement of the leptomeninges on T1 images with gadolinium contrast, note the large right frontal cortical enhancement. An open biopsy was performed (Figure 2) and revealed a dura brown pigmented appearance. Histological examination demonstrated a typical malignant melanoma with expansion over the subarachnoid space and infiltration of the brain, these cells stained positive for HMB-45, protein S-100 and vimentin. A search for cutaneous nevi and retinal tumor involvement was not revealing. In the absence of an alternative primary site of origin for the tumor, a diagnosis of primary leptomeningeal melanoma was made. Three days after surgery the patient presented a sudden deterioration with signs of raised intracranial pressure. Further extensive infection screen, including CSF and blood studies, was negative (including bacteria, viruses, atypical organisms, and fungi).

The patient received postoperative radiation therapy with 5400 cGy using fractionated irradiation in high doses, for 30 days. There was no objective response to therapy, and he died fifteen days after concluded the treatment and two months after diagnosis due to septic shock and seizures in an Oncology Center.

Discussion

Primary leptomeningeal melanoma has been described as occurring in a number of different forms. All forms of leptomeningeal melanoma are uncommon in children [1, 3, 4]. Acute presentation in infancy usually involves hydrocephalus and other symptoms of raised intracranial pressure, such lethargy, irritability, poor feeding and seizures [1, 3, 5-8]. The most common age at presentation is on 0-24 months [1, 3]. The development of symptoms can predate the appearance of malignant change in the leptomeningeal lesions. The clinical course, once symptomatic, even in the absence of malignant transformation, is rapidly progressive in patients with neurocutaneous melanosis [1, 3].

Primary leptomeningeal melanoma of the central nervous system has been classified pathologically into two types: 1) that which diffusely invades the pia mater and spreads into the subarachnoid space; and 2) that which causes nodular tumors [3, 5, 6]. In both forms, primary leptomeningeal melanoma is highly malignant tumor characterized histopathologically by marked cellular pleomorphism, mitoses, necrosis and hemorrhage [5, 6].

Diagnosis premortem always has been difficult, but the combination of cytologic examination of cerebral fluid, biopsy and modern imaging techniques has proved helpful [1, 3, 7, 9]. The direct neurosurgical extirpation of tumor has a minimal role to play, as the leptomeninges are usually diffusely involved with melanomatous change. Children, however, frequently require a treatment of their hydrocephalus like in our patient, but blindness has been reported as a late feature [3, 6, 7]. Other central nervous system tumors should be considered in the differential diagnosis, including lymphoma, leukemia, neuroectodermal tumors and pigmented medulloblastoma. Characteristic findings have been described on magnetic resonance imaging (MRI), with hypertense signal on T1-weighted images and hypointense signal on T2-weighted images, as so in our patient [3, 6, 7, 9].

Generally, solitary leptomeningeal melanomas have a better prognosis than diffuse melanomas, direct surgical removal of tumor is usually possible with solitary leptomeningeal melanomas, which may account for the longer survival periods of the disease [3]. However, therapy combined after craniotomy and chemotheraphy or radiotherapy has been used, but the patient response is poor like our patient [1, 3, 7-9].

Although primary leptomeningeal melanoma continues to be a highly aggressive, malignant tumor with poor survival, it is hoped that earlier detection by MRI, surgical intervention and newer clinical trials will lead to increased survival for children with this cancer.
REFERENCES

