Targeting UCP2 Suppresses the FAK Signaling and Progression of Human Head and Neck Cancer Cells

Targeting UCP2 Suppresses the FAK Signaling and Progression of Human Head and Neck Cancer Cells

Author Info

Corresponding Author
Yunfeng Zhao
Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center at Shreveport, Louisiana, USA

A B S T R A C T

Background: New adjuvant therapies for human head and neck (H&N) cancer to improve the quality of life of the patients are in great demand. Our early studies have demonstrated that uncoupling protein 2 (UCP2) is upregulated in the tumor tissues of H&N cancer compared to the adjacent normal tissues; however, the role of UCP2 in H&N cancer has not been studied. Objective: In this manuscript, we aim to examine whether UCP2 contributes to H&N cancer progression in vitro. Methods: We generated UCP2 stable knockdown H&N cancer cells and detected the effects of UCP2 inhibition on cell proliferation, migration, invasion, 3D spheroid formation, and the sensitivity to a chemodrug treatment. Results: Knockdown of UCP2 suppressed the progression of H&N cancer in vitro, which might be mediated via the following mechanism: 1) increased the G1 phase whereas decreased the S phase of the cell cycle, which could be mediated by suppression of the G1/S regulators including CDK4/6 and cyclin D1. 2) Decreased mitochondrial oxygen consumption, ATP production, and lactate formation, which is consistent with the downregulation of c-Myc. 3) FAK may serve as the upstream signaling molecule, and its action was mediated by Akt and ERK. Conclusions: Our studies first demonstrate that targeting UCP2 may suppress H&N cancer progression in vitro.

Article Info

Article Type
Research Article
Publication history
Received: Thu 09, Apr 2020
Accepted: Fri 24, Apr 2020
Published: Wed 29, Apr 2020
Copyright
© 2023 Yunfeng Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Hosting by Science Repository.
DOI: 10.31487/j.COR.2020.04.09